
MATLAB® Builder™ NE 2
User’s Guide

How to Contact The MathWorks

www.mathworks.com Web
comp.soft-sys.matlab Newsgroup
www.mathworks.com/contact_TS.html Technical Support

suggest@mathworks.com Product enhancement suggestions
bugs@mathworks.com Bug reports
doc@mathworks.com Documentation error reports
service@mathworks.com Order status, license renewals, passcodes
info@mathworks.com Sales, pricing, and general information

508-647-7000 (Phone)

508-647-7001 (Fax)

The MathWorks, Inc.
3 Apple Hill Drive
Natick, MA 01760-2098
For contact information about worldwide offices, see the MathWorks Web site.

MATLAB® Builder™ NE User’s Guide

© COPYRIGHT 2002–2008 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation
by, for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined
in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of
this Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and Documentation
by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government’s
needs or is inconsistent in any respect with federal procurement law, the government agrees to return the
Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

The MathWorks products are protected by one or more U.S. patents. Please see
www.mathworks.com/patents for more information.

Revision History
March 2006 Online only New for Version 2.0 (Release 2006a)
September 2006 Online only Revised for Version 2.1 (Release 2006b)
March 2007 Online only Revised for Version 2.2 (Release 2007a)
September 2007 Online only Revised for Version 2.2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2.2 (Release 2008a)

http://www.mathworks.com/trademarks
http://www.mathworks.com/patents

Contents

Getting Started

1
What Is MATLAB® Builder™ NE? . 1-2

About .NET Builder . 1-2
How Does the MATLAB® Builder™ NE Product Work? . . . 1-2
Unsupported MATLAB® Data Types 1-3

Creating a .NET Component . 1-4
Using the Deployment Tool . 1-4
Using the Command Line to Create .NET Components . . . 1-6

Using Components Created with the MATLAB®

Builder™ NE Product . 1-8

Magic Square Example . 1-9
About the Magic Square Example . 1-9
Building the .NET Component . 1-9
Using the Component in an Application 1-11

Building and Packaging a .NET Component

2
Elements of a MATLAB® Builder™ NE Project 2-2

Classes and Methods . 2-2
Component and Class Naming Conventions 2-2
Versions . 2-3

How Does the MATLAB® Builder™ NE Product Handle
Data? . 2-4
The MATLAB® Function Signatures 2-4
Understanding Data Conversion Classes 2-5
Automatic Casting to MATLAB® Types 2-6

iii

About MATLAB® Array Indexing . 2-7

What Happens in the Build Process? 2-8
How the .NET Builder Creates a Component 2-8
How the MCR Is Shared Among Classes 2-9

What Happens in the Packaging Process? 2-10

How Does Component Deployment Work? 2-11

Executing MATLAB® Functions via the World Wide
Web . 2-12

Using Components Created by the MATLAB®

Builder™ NE Product

3
Installing the Components on the Development

Machine . 3-3

Specifying Component Assembly and Namespace 3-4

Creating an Instance of the Class 3-5

Converting Native Data Types to MATLAB® Data
Types . 3-6
Example: Native Data Conversion . 3-6
Specifying the Type . 3-7
Specifying Optional Arguments . 3-7
Handling MATLAB® Global Variables 3-11
Handling Return Values . 3-11

Handling Errors . 3-16

Managing Native Resources . 3-18
CLR Memory Manager . 3-18
Using Automated Garbage Collection 3-18

iv Contents

Alternative Ways to Free Native Resources 3-20

Accessing Real or Imaginary Components Within
Complex Arrays . 3-23
Extracting Real or Imaginary Components 3-23
Returning Values with Component Indexing 3-23
Assigning Values with Component Indexing 3-24
Converting MATLAB® Arrays to .NET Arrays Using

Component Indexing . 3-25

Blocking Execution of a Console Application that
Creates Figures . 3-26
The WaitForFiguresToDie Method . 3-26
Code Fragment: Using WaitForFiguresToDie to Block

Execution . 3-27

Sample Applications (C#)

4
Creating a Simple Plot . 4-3

Passing Variable Arguments . 4-8

Creating a Spectral Analysis . 4-14
Example Overview . 4-14
Step-by-Step Procedure . 4-16

Matrix Math Example . 4-22
Example Overview . 4-22
MATLAB® Functions to Be Encapsulated 4-23
Understanding the MatrixMathDemo Program 4-29

Phonebook Example . 4-31
The makephone Function . 4-31
Phonebook Example: Step-by-Step Procedure 4-31

v

Sample Applications (Microsoft® Visual Basic®

.NET)

5
Magic Square Example (Visual Basic®) 5-3

Create Plot Example (Visual Basic®) 5-7

Variable Arguments Example (Visual Basic®) 5-11

Spectral Analysis Example (Visual Basic®) 5-15

Matrix Math Example (Visual Basic®) 5-20

Phonebook Example (Visual Basic) 5-25
The makephone Function . 5-25
Phonebook Example: Step-by-Step Procedure 5-25

Troubleshooting

6
Troubleshooting the Build Process 6-2

View the Latest Build Log . 6-2
Generate Verbose Output . 6-2

Failure to Find a Required File . 6-3

Diagnostic Messages . 6-4
Enhanced Error Diagnostics Using mstack Trace 6-7

vi Contents

Reference Information

7
Requirements for the MATLAB® Builder™ NE

Product . 7-2
System Requirements . 7-2
Compiler Requirements . 7-2
Limitations and Restrictions . 7-3

Data Conversion Rules . 7-4
Managed Types to MATLAB® Arrays 7-4
MATLAB® Arrays to Managed Types 7-5
Character and String Conversion . 7-5
Unsupported MATLAB® Array Types 7-6

Overview of Data Conversion Classes 7-7
Overview of Classes . 7-7
Returning Data from the MATLAB® Product to Managed

Code . 7-8
Example of MWNumericArray in a .NET Application 7-8
Interfaces Generated by the MATLAB® Builder™ NE

Product . 7-8

MWArray Class Specification . 7-14

Function Reference

8

Creating and Installing COM Components

9
Building a Deployable Application 9-2

Using the Command-Line Interface 9-4

vii

Installing COM Components on a Target Computer . . . 9-8

Programming with COM Components Created
by the MATLAB® Builder™ NE Product

10
General Techniques . 10-3

Registering and Referencing the Utility Library 10-5

Creating an Instance of a Class in Microsoft® Visual
Basic® . 10-6
CreateObject Function . 10-6
Microsoft® Visual Basic® New Operator 10-7
Advantages of Each Technique . 10-7
Declaring a Reusable Class Instance 10-8

Calling the Methods of a Class Instance 10-9
Standard Mapping Technique . 10-9
Variant . 10-10
Examples of Passing Input and Output 10-10

Calling a COM Object in a Visual C++® Program 10-12
Using the MATLAB® Builder™ NE Product to Create the

Object . 10-12
Using the Component in a Visual C++® Program 10-13

Using a COM Component in a .NET Application 10-15
C# Implementation . 10-15
Microsoft® Visual Basic® Implementation 10-18

Adding Events to COM Objects . 10-22
MATLAB® Language Pragma . 10-22
Using a Callback with a Microsoft® Visual Basic® Event . . 10-23

Passing Arguments . 10-27
Overview . 10-27

viii Contents

Creating and Using a varargin Array in Microsoft® Visual
Basic® Programs . 10-27

Creating and Using varargout in Microsoft® Visual Basic®

Programs . 10-28

Using Flags to Control Array Formatting and Data
Conversion . 10-29
Overview . 10-29
Array Formatting Flags . 10-30
Using Array Formatting Flags . 10-30
Using Data Conversion Flags . 10-33
Special Flags for Some Microsoft® Visual Basic® Types . . . 10-35

Using MATLAB® Global Variables in Microsoft® Visual
Basic® . 10-36

Blocking Execution of a Console Application that
Creates Figures . 10-39
The MCRWaitForFigures Method . 10-39
Using MCRWaitForFigures to Block Execution 10-40

Obtaining Registry Information . 10-42

Handling Errors During a Method Call 10-44

Using COM Components in Microsoft® Visual
Basic® Applications

11
Magic Square Example . 11-2

Example Overview . 11-2
Creating the M-File . 11-2
Using the Deployment Tool to Create and Build the

Project . 11-3
Creating the Microsoft® Visual Basic® Project 11-4
Creating the User Interface . 11-4
Creating the Executable in Microsoft® Visual Basic® 11-7
Testing the Application . 11-7

ix

Packaging the Component . 11-8

Creating an Excel® Add-In: Spectral Analysis
Example . 11-9
Example Overview . 11-9
Building the Component . 11-9
Integrating the Component with VBA 11-11
Creating the Microsoft® Visual Basic® Form 11-13
Adding the Spectral Analysis Menu Item to Microsoft®

Excel® . 11-18
Saving the Add-In . 11-19
Testing The Add-in . 11-20
Packaging and Distributing the Add-In 11-22

Univariate Interpolation Example 11-23
Example Overview . 11-23
Using the Deployment Tool to Create and Build the

Component . 11-23
Using the Component in Microsoft® Visual Basic® 11-24
Creating the Microsoft® Visual Basic® Form 11-25

Matrix Calculator Example . 11-31
Example Overview . 11-31
Building the Component . 11-31
Using the Component in Microsoft® Visual Basic® 11-33
Creating the Microsoft® Visual Basic® Form 11-33

Curve Fitting Example . 11-42
Example Overview . 11-42
Building the Component . 11-42
Building the Project . 11-43
Using the Component in Microsoft® Visual Basic® 11-43
Creating the Microsoft® Visual Basic® Form 11-44

Bouncing Ball Simulation Example 11-50
Example Overview . 11-50
Building the Component . 11-50
Using the Component in Microsoft® Visual Basic® 11-51
Creating the Microsoft® Visual Basic® Form 11-52

x Contents

How the MATLAB® Builder™ NE Product
Creates COM Components

12
Overview of Internal Processes . 12-2

How Is a MATLAB® Builder™ NE Component Created? . . 12-2
Code Generation . 12-2
Create Interface Definitions . 12-3
C++ Compilation . 12-3
Linking and Resource Binding . 12-3
Registration of the DLL . 12-3

Component Registration . 12-4
Self-Registering Components . 12-4
Globally Unique Identifier (GUID) 12-5
Versioning . 12-6

Data Conversion . 12-8
Conversion Rules . 12-8
Array Formatting Flags . 12-19
Data Conversion Flags . 12-21

Calling Conventions . 12-23
Producing a COM Class . 12-23
IDL Mapping . 12-24
Microsoft® Visual Basic® Mapping . 12-25

Utility Library for Microsoft® COM Components

13
Referencing the Utility Classes . 13-2

Utility Library Classes . 13-3
Class MWUtil . 13-3
Class MWFlags . 13-10
Class MWStruct . 13-16
Class MWField . 13-23
Class MWComplex . 13-24

xi

Class MWSparse . 13-26
Class MWArg . 13-29

Enumerations . 13-31
Enum mwArrayFormat . 13-31
Enum mwDataType . 13-31
Enum mwDateFormat . 13-32

Examples

A
Quick Start . A-2

Native Data Conversion . A-2

COM Components . A-2

Sample Applications (C#) . A-2

Sample Applications (Java) . A-3

Sample Applications (Visual Basic .NET) A-3

Glossary

Index

xii Contents

1

Getting Started

This chapter provides a quick start for using the MATLAB® Builder™ NE
product. See later chapters for more details.

What Is MATLAB® Builder™ NE?
(p. 1-2)

Brief description of what the
MATLAB Builder NE product does
and how it works

Creating a .NET Component (p. 1-4) Step-by-step procedure to create
and package a MATLAB Builder
NE component that encapsulates
MATLAB® code

Using Components Created with the
MATLAB® Builder™ NE Product
(p. 1-8)

Step-by-step procedure to access a
MATLAB Builder NE component in
an application

Magic Square Example (p. 1-9) Step-by-step example, including code
for a simple MATLAB function and
a simple .NET application written
in C#

1 Getting Started

What Is MATLAB® Builder™ NE?

In this section...

“About .NET Builder” on page 1-2

“How Does the MATLAB® Builder™ NE Product Work?” on page 1-2

“Unsupported MATLAB® Data Types” on page 1-3

About .NET Builder
The MATLAB® Builder™ NE product is an extension to the MATLAB®

Compiler™ product. Use MATLAB Builder NE to package MATLAB®

functions so that .NET programmers can access them from any CLS-compliant
language.

Note CLS is an acronym for Common Language Specification. CLS is a
subset of language features supported by the .NET common language runtime
(CLR). CLS includes features common to several object-oriented programming
languages, such as C#, VB.NET, and C++ with managed extensions.
CLS-compliant components and tools are guaranteed to interoperate with
other CLS-compliant components and tools.

When you package and distribute the application to your users, you must
include supporting files generated by the builder as well as the MATLAB
Component Runtime (MCR).

How Does the MATLAB® Builder™ NE Product Work?
The builder converts MATLAB functions to .NET methods that encapsulate
the MATLAB code. Each MATLAB Builder NE component contains one or
more classes, and each class provides an interface to the M-functions that
you add to the class at build time. The .NET component provides a set of
CLS-compliant methods that wrap the M-code.

The builder provides robust data conversion, indexing, and array formatting
capabilities to preserve the flexibility of the MATLAB product when called
from managed code. To support the MATLAB data types, the MATLAB

1-2

What Is MATLAB® Builder™ NE?

Builder NE product provides the MWArray data conversion classes that are
defined in the MATLAB Builder NE MWArray assembly. You need to reference
this assembly in your managed application to convert native arrays to
MATLAB arrays and vice versa.

The builder also provides custom error handling so that errors originating
from MATLAB functions are reported as standard managed exceptions. The
error description contains specific references to the MATLAB code, thus
simplifying the debugging process.

Note All M-code to be compiled must be in the form of a function.

Creating COM Components
You can also use the builder to create COM components. COM stands for
Component Object Model, which is a software architecture developed by
Microsoft® to build component-based applications. COM objects expose
interfaces that allow applications and other components to access the features
of the objects. COM objects are accessible through Microsoft® Visual Basic®,
C++, or any language that supports COM objects. See Chapter 9, “Creating
and Installing COM Components” and Chapter 10, “Programming with COM
Components Created by the MATLAB® Builder™ NE Product” for more
information about creating and accessing COM components.

Unsupported MATLAB® Data Types
The MATLAB Builder NE product does not support MATLAB object data
types (for example, Time Series Objects) and most unsigned numeric types.

1-3

1 Getting Started

Creating a .NET Component

In this section...

“Using the Deployment Tool” on page 1-4

“Using the Command Line to Create .NET Components” on page 1-6

Using the Deployment Tool
To create a component you need to write M-code (or use existing code) and then
create a project in the MATLAB® Builder™ NE product that encapsulates
the code. This section describes how to create a .NET component using the
Deployment Tool. For information about using the mcc command to create
a component, see “Using the Command Line to Create .NET Components”
on page 1-6.

1 Write, test, and save the MATLAB® code to be used as the basis for the
.NET component.

2 While you are still in the MATLAB product, issue the following command:

deploytool

The Deployment Tool dialog box opens.

3 Create a new project by clicking the New Project button in the toolbar.
The New Deployment Project dialog box opens. Select the product
you are using in the left pane. Select the type of output desired in the
right pane.

4 Add files that you want to encapsulate by dragging them to the Deployment

Tool, or by selecting them and clicking the Add Files button in the
toolbar.

5 Set properties for building and packaging. Click Settings or click the
Settings button in the toolbar. You can use the Settings dialog box to
specify many build and packing options, such as building a debug version of
your compiled code and specifying verbose output. Use the .NET page in
the Settings dialog box to create a shared assembly or specify the version of
the .NET framework you want to use for your component.

1-4

Creating a .NET Component

6 Save the project by clicking the Save button in the toolbar.

7 Build the component. Click the Build button in the toolbar to start
the build process.

The build process generates C# code for the wrapper class in the \src
subdirectory of your project directory. It also creates the component
assembly containing the wrapper classes and a component.ctf file in the
\distrib subdirectory of your project directory. The files in the \distrib
directory implement your .NET component.

The .ctf file is a component technology file, which is required to support
all compiled components that encapsulate MATLAB functions.

The Output pane shows the output of the build process and informs you of
any problems encountered. The resulting DLL is automatically registered
on your system.

8 Test, edit, and rebuild the component as needed.

You probably want to test your component before using it in an application
or before packaging it for use by others. After testing the component on
your development platform, you can reopen the project if necessary and
proceed to the next step.

9 Optionally, create a self-extracting executable containing the files that are
required for application development using the generated component. You

can do this by clicking the Package button in the toolbar.

Optionally include the MATLAB Component Runtime (MCR) if necessary.

Note The packaging step is necessary only if you want to make the
component available to other application developers on another machine.

10 Distribute and run the self-extracting executable on the development
machine.

1-5

1 Getting Started

Using the Command Line to Create .NET Components
Instead of using the Deployment Tool to create .NET components, you can
use the mcc command.

The following sections describe the subset of mcc command options that
are required to create .NET components. The sections provide detailed mcc
syntax with examples.

• “Command-Line Syntax Description” on page 1-6

• “Using the .NET Bundle Files to Simplify the Command” on page 1-6

• “Example: Creating a .NET Component Namespace” on page 1-7

• “Example: Adding Multiple Classes to a Component” on page 1-7

To learn more about the mcc command and all of its options, see the MATLAB
Compiler documentation.

Command-Line Syntax Description
The following defines the complete mcc command syntax with all required
and optional arguments used to create a .NET component. Brackets indicate
optional parts of the syntax.

mcc - W 'dotnet:component_name,class_name,
0.0|1.1|2.0, Private|Encryption_Key_Path' file1
[file2...fileN][class{class_name:file1 [,file2,...,fileN]},... [-d
output_dir_path] -T link:lib

Note For complete information about the mcc command, including the -W
option, see mcc in the function reference section of this user’s guide.

Using the .NET Bundle Files to Simplify the Command
To simplify the command line used to create .NET components, you can use the
.NET Builder bundle file, named dotnet, to make creating .NET components
easier. When using this bundle file, you must still pass in the four parts of the
-W argument text string, however you do not have to specify the -T option.

1-6

Creating a .NET Component

The following example creates a .NET component called mycomponent
containing a single .NET class named myclass with methods foo and bar.
When used with the -B option, the word dotnet specifies the name of the
predefined .NET Builder bundle file.

mcc -B 'dotnet:mycomponent,myclass,2.0,encryption_keyfile_path'
foo.m bar.m

In this example, the builder uses the .NET Framework version 2.0 to
compile the component into a shared assembly using the key file specified in
encryption_keyfile_path to sign the shared component.

Example: Creating a .NET Component Namespace
The following example creates a .NET component from two M-files, foo.m
and bar.m.

mcc - B 'dotnet:mycompany.mygroup.mycomponent,myclass,0.0,Private'
foo.m bar.m

The example creates a .NET component named mycomponent that has the
following namespace: mycompany.mygroup. The component contains a single
.NET class, myclass, which contains methods foo and bar.

To use myclass place the following statement in your code:

using mycompany.mygroup;

Example: Adding Multiple Classes to a Component
The following examples creates a .NET component that includes more than
one class. This example uses the optional class{...} argument to the mcc
command.

mcc - B 'dotnet:mycompany.mycomponent,myclass,2.0,Private' foo.m bar.m

class{myclass2:foo2.m,bar2.m}

The example creates a .NET component named mycomponent with two classes:

myclass has methods foo and bar

myclass2 has methods foo2 and bar2

1-7

1 Getting Started

Using Components Created with the MATLAB® Builder™
NE Product

This section describes how to use a component created with the MATLAB®

Builder™ NE product in a .NET application.

1 If the component is not already installed on the machine where you want
to develop your application, run the self-extracting executable that was
created in “Creating a .NET Component” on page 1-4. This step is not
necessary if you are developing your application on the same machine
where you created the .NET component.

2 Reference the .NET component in your Microsoft® Visual Studio® project or
from the command line of a CLS-compliant compiler.

You must also add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\architecture\framework_version.

3 Instantiate the generated .NET Builder classes and call the class methods
as you would with any .NET class. To marshal data between the native
.NET types and the MATLAB® array type, you need to use the MWArray
data conversion classes. See “Overview of Classes” on page 7-7 for an
introduction to the classes and see MWArray Class Library Reference
(available online only) for details about the API for this class library.

4 Build and test the .NET application as you would any application.

5 Create an application installation package for end users that includes
the files required for the .NET Builder components that encapsulate the
MATLAB functions.

1-8

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Magic Square Example

Magic Square Example

In this section...

“About the Magic Square Example” on page 1-9

“Building the .NET Component” on page 1-9

“Using the Component in an Application” on page 1-11

About the Magic Square Example
The Magic Square example shows you how to create a .NET component that
encapsulates a MATLAB® function, makesquare. The component computes
a magic square. The example then shows how to use this component in a
sample application, called MagicSquareApp.cs. The sample application
displays the array returned by the makesquare method, using the MWarray
conversion classes to convert the MATLAB array to a native array. When you
run the MagicDemoApp application from the command line, you can pass the
dimension for the magic square as a command-line argument.

The following sections provide step-by-step instructions for building and
running the example.

Building the .NET Component

1 Copy the files for this example from the appropriate MATLAB® Builder™
NE examples directory into your work directory. There are example
directories for Version 7 (VS7) and Version 8 (VS8) of Microsoft® Visual
Studio® .NET (also known as Microsoft Visual Studio .NET 2003 and
Microsoft Visual Studio 2005, respectively). The example copies the files
from the VS7 directory.

matlabroot\toolbox\dotnetbuilder\Examples\VS7\MagicSquareExample

matlabroot represents the name of your top-level MATLAB installation
directory, as returned by the matlabroot command.

The example assumes your work directory is D:\Work

1-9

1 Getting Started

Note If you have Microsoft Visual Studio .NET installed, you can load
projects for all the examples by opening either DotNetExamples.sln. Be
sure to copy the solution for the version of Visual Studio® .NET that you
are using, Version 7 or Version 8.

2 At the MATLAB command prompt, change directory to the new
MagicSquareExample subdirectory in your work directory.

3 Write the makesquare function as you would any MATLAB function.

Here is the code for the makesquare function:

function y = makesquare(x)
y = magic(x);

This code is already in your directory in
MagicSquareExample\MagicDemoComp\makesquare.m.

4 Create a .NET component as follows:

a. While in the MATLAB product, issue the following command to open
the Deployment Tool:

deploytool

b. Create a new project by clicking the New Project button in the
toolbar. The New Deployment Project dialog box opens. Select
the product you are using in the left pane. Select the type of output
desired in the right pane.

c. Specify the following settings for your project. In the New Deployment
Project dialog, specify the project name as MagicDemoComp and click
OK.

d. Click the Project Settings icon in the Deployment Tool toolbar and
ensure the project settings are set as follows:

1-10

Magic Square Example

Setting Value

Component name MagicDemoComp

Generate verbose
output

Selected

e. In the Deployment Tool, right-click on the MagicDemoClass label and
rename the class to MagicSquare.

f. Add the makesquare.m file to the project. Locate your work directory
and navigate to the MagicDemoComp directory, which contains the
M-file for the makesquare function.

5 Build the component by clicking the Build button in the Deployment
Tool toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The generated component files
are placed in two newly created directories, src and distrib, in the
MagicDemoComp directory. A copy of the build log is placed in the src
directory.

See “What Happens in the Build Process?” on page 2-8 for more information.

Using the Component in an Application

1 Write source code for an application that uses the .NET component created
in “Building the .NET Component” on page 1-9.

The C# source code for the sample application for this example is in
MagicSquareExample\MagicDemoCSharpApp\MagicDemoApp.cs.

The program listing is shown here.

1-11

1 Getting Started

Note Although the MATLAB Builder NE product generates C# code for the
MagicSquare component and the sample application is in C#, applications
that use the component do not need to be coded in C#. You can access the
component from any CLS-compliant .NET language. For examples, see
Chapter 5, “Sample Applications (Microsoft® Visual Basic® .NET)”.

MagicDemoApp.cs

// ***

//

// MagicDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2005 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using MagicDemoComp;

namespace MathWorks.Demo.MagicSquareApp

{

/// <summary>

/// The MagicSquareApp demo class computes a magic square of the user specified size.

/// </summary>

/// <remarks>

/// args[0] - a positive integer representing the array size.

/// </remarks>

class MagicDemoApp

{

#region MAIN

1-12

Magic Square Example

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

MWNumericArray arraySize= null;

MWNumericArray magicSquare= null;

try

{

// Get user specified command line arguments or set default

arraySize= (0 != args.Length) ? System.Double.Parse(args[0]) : 4;

// Create the magic square object

MagicSquare magic= new MagicSquare();

// Compute the magic square and print the result

magicSquare= (MWNumericArray)magic.makesquare((MWArray)arraySize);

Console.WriteLine("Magic square of order {0}\n\n{1}", arraySize, magicSquare);

// Convert the magic square array to a two dimensional native double array

double[,] nativeArray= (double[,])magicSquare.ToArray(MWArrayComponent.Real);

Console.WriteLine("\nMagic square as native array:\n");

// Display the array elements:

for (int i= 0; i < (int)arraySize; i++)

for (int j= 0; j < (int)arraySize; j++)

Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray[i,j]);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

1-13

1 Getting Started

#endregion

}

}

2 Build the application using Visual Studio .NET.

a. Open the project file for the Magic Square example
(MagicDemoCSharpApp.csproj) in Visual Studio .NET.

b. If necessary, add a reference to the MWArray component in
matlabroot\toolbox\dotnetbuilder\bin\
architecture\framework_version.

c. If necessary, add a reference to the Magic Square component
(MagicDemoComp), which is the distrib subdirectory.

d. Build and run the application in Visual Studio .NET.

The first time you run the application, Visual Studio .NET creates a
directory named MagicDemo_MCR in MagicSquareExample\bin\debug.
The MagicDemo_MCR directory contains encrypted versions of M-files
that the application requires.

Note Microsoft® .NET Framework version 2.0 is only supported by
Visual Studio 2005.

1-14

2

Building and Packaging a
.NET Component

To build a .NET component, you must first create a project, which specifies
the M-code to be used in the component that you want to create. This section
describes the elements of a MATLAB® Builder™ NE project. In addition, this
section describes the data conversion between managed types and MATLAB®

types that is supported by the MATLAB Builder NE product.

Elements of a MATLAB® Builder™
NE Project (p. 2-2)

How the MATLAB Builder NE
product uses the specifications in a
project

How Does the MATLAB® Builder™
NE Product Handle Data? (p. 2-4)

How the MATLAB Builder NE
product supports data conversion
between managed types and
MATLAB types

What Happens in the Build Process?
(p. 2-8)

Details about the process of building
a .NET component

What Happens in the Packaging
Process? (p. 2-10)

Details about the packaging process

How Does Component Deployment
Work? (p. 2-11)

Details about deploying to an end
user

Executing MATLAB® Functions via
the World Wide Web (p. 2-12)

Special information about
interfacing MATLAB code with
the Internet

2 Building and Packaging a .NET Component

Elements of a MATLAB® Builder™ NE Project

In this section...

“Classes and Methods” on page 2-2

“Component and Class Naming Conventions” on page 2-2

“Versions” on page 2-3

Classes and Methods
The builder project contains the files and settings needed by the MATLAB®

Builder™ NE product to create a deployable .NET component. A project
specifies information about classes and methods, including the MATLAB®

functions to be included.

The builder transforms MATLAB functions that are specified in the
component’s project to methods belonging to a managed class.

When creating a component, you must provide one or more class names as
well as a component name. The component name also specifies the name of
the assembly that implements the component. The class name denotes the
name of the class that encapsulates MATLAB functions.

To access the features and operations provided by the MATLAB functions,
instantiate the managed class generated by the builder, and then call the
methods that encapsulate the MATLAB functions.

Component and Class Naming Conventions
Typically you should specify names for components and classes that will be
clear to programmers who use your components. For example, if you are
encapsulating many MATLAB functions, it helps to determine a scheme of
function categories and to create a separate class for each category. Also, the
name of each class should be descriptive of what the class does.

The .NET Framework General Reference recommends the use of Pascal case
for capitalizing the names of identifiers of three or more characters. That
is, the first letter in the identifier and the first letter of each subsequent
concatenated word are capitalized. For example:

2-2

http://msdn.microsoft.com/library/default.asp?url=/library/

Elements of a MATLAB® Builder™ NE Project

MakeSquare

In contrast, MATLAB programmers typically use all lowercase for names of
functions. For example:

makesquare

By convention, the MATLAB Builder NE examples use Pascal case.

Valid characters are any alpha or numeric characters, as well as the
underscore (_) character.

Versions
The builder supports the standard versioning capabilities provided by the
.NET framework.

Note You can make side-by-side invocations of multiple versions of a
component within the same application only if they access the same version
of the MCR.

2-3

2 Building and Packaging a .NET Component

How Does the MATLAB® Builder™ NE Product Handle
Data?

In this section...

“The MATLAB® Function Signatures” on page 2-4

“Understanding Data Conversion Classes” on page 2-5

“Automatic Casting to MATLAB® Types” on page 2-6

“About MATLAB® Array Indexing” on page 2-7

The MATLAB® Function Signatures
The MATLAB® product supports multiple signatures for function calls.

The generic MATLAB function has the following structure:

function [Out1,Out2,...,varargout]=foo(In1,In2,...,varargin)

To the left of the equal sign, the function specifies a set of explicit and optional
return arguments.

To the right of the equal sign, the function lists explicit input arguments
followed by one or more optional arguments.

All arguments represent a specific MATLAB type.

When the MATLAB® Builder™ NE product processes your M-code, it creates
several overloaded methods that implement the MATLAB functions. Each
of these overloaded methods corresponds to a call to the generic MATLAB
function with a specific number of input arguments. In addition to these
methods, the builder creates another method that defines the return values
of the MATLAB function as an input argument. This method simulates the
feval external API interface in the MATLAB product.

2-4

How Does the MATLAB® Builder™ NE Product Handle Data?

Understanding Data Conversion Classes
To support data conversion between managed types and MATLAB types, the
builder provides a set of data conversion classes derived from the abstract
class, MWArray.

When you invoke a method on a component, the input and output parameters
are a derived type of MWArray. To pass parameters, you can either instantiate
one of the MWArray subclasses explicitly, or, in many cases, pass the
parameters as a managed data type and rely on the implicit data conversion
feature of .NET Builder.

Overview of Classes and Methods in the Data Conversion
Class Hierarchy
The data conversion classes are built as a class hierarchy that represents the
major MATLAB array types.

Note See “Overview of Classes” on page 7-7 for an introduction to the classes
and see MWArray Class Library Reference (available online only) for details
about this class library.

The root of the hierarchy is the MWArray abstract class. The MWArray
class has the following subclasses representing the major MATLAB types:
MWNumericArray, MWLogicalArray, MWCharArray, MWCellArray, and
MWStructArray.

MWArray’s derived C classes provide the following:

• Constructors and destructors to instantiate and dispose of MATLAB arrays

• Properties to get and set the array data

• Indexers to support a subset of MATLAB array indexing

• Implicit and explicit data conversion operators

• General methods

2-5

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

2 Building and Packaging a .NET Component

Advantage of Using Data Conversion Classes
The MWArray data conversion classes allow you to pass most native .NET
value types as parameters directly without using explicit data conversion.
There is an implicit cast operator for most native numeric and string types
that will convert the native type to the appropriate MATLAB array.

Automatic Casting to MATLAB® Types

Note Because the conversion process is automatic (in most cases), you do not
need to understand the conversion process to pass and return arguments with
MATLAB Builder NE components.

In most instances, if a native .NET primitive or array is used as an input
parameter in a C# program, the builder transparently converts it to an
instance of the appropriate MWArray class before it is passed on to the
method. The builder can convert most CLS-compliant string, numeric type, or
multidimensional array of these types to an appropriate MWArray type.

Note This conversion is transparent in C# applications, but might require
an explicit casting operator in other languages, for example, op_implicit
in Visual Basic®.

Here is an example. Consider the .NET statement:

result = theFourier.plotfft(3, data, interval);

In this statement the third argument, namely interval, is of the .NET
native type System.Double. The builder casts this argument to a MATLAB
1-by-1 double MWNumericArray type (which is a wrapper class containing a
MATLAB double array).

See “Data Conversion Rules ” on page 7-4 for a list of all the data types that
are supported along with their equivalent types in the MATLAB product.

2-6

How Does the MATLAB® Builder™ NE Product Handle Data?

Note There are some data types commonly used in the MATLAB product that
are not available as native .NET types. Examples are cell arrays, structure
arrays, and arrays of complex numbers. Represent these array types as
instances of MWCellArray, MWStructArray, and MWNumericArray, respectively.

About MATLAB® Array Indexing
.NET Builder provides indexers to support a subset of MATLAB array
indexing.

If each element in a large array returned by a .NET Builder component is to
be indexed, the returned MATLAB array should first be converted to a native
array using the toArray() method.

Don’t keep the array in MATLAB type; convert it to a native array first.
See the “Magic Square Example” on page 1-9 for an example of native type
conversion.

2-7

2 Building and Packaging a .NET Component

What Happens in the Build Process?

In this section...

“How the .NET Builder Creates a Component” on page 2-8

“How the MCR Is Shared Among Classes” on page 2-9

How the .NET Builder Creates a Component
To create a component, the builder does the following:

1 Generates C# code and .ctf file to implement your component

The first step of the build process generates two C# files: a component data
file and a component wrapper. The component data file contains static
information for the component. The wrapper contains the implementation
code for the .NET component and provides a .NET application programming
interface (API) for the MATLAB® functions you add to the project at design
time.

2 Compiles the C# code and generates /distrib and /src subdirectories

The second step of the build process compiles the two C# files produced in
step 1, creating a managed assembly file for the component.

The MATLAB® Builder™ NE product creates two subdirectories
under the project directory: project-directory/src and
project-directory/distrib. These subdirectories contain the following
files:

Files in the Project Subdirectories

Subdirectory Files Description

ComponentName
_mcc_component_data.cs

C# component data
file

src

ClassName1.cs ...
ClassNameN.cs

C# wrapper class file

2-8

What Happens in the Build Process?

Files in the Project Subdirectories (Continued)

Subdirectory Files Description

ComponentName.dll .NET component
assembly

ComponentName.ctf Component CTF file

ComponentName.pdb .NET component
debug file (Debug
builds only)

distrib

ComponentName.xml .NET component
XML documentation
file

Note When you build your project, you can specify the compilation of a
private or shared assembly. A private assembly is copied to an application
subdirectory and is owned exclusively by the application. A shared
assembly usually resides in the Global Assembly Cache, and can be directly
referenced by multiple applications.

How the MCR Is Shared Among Classes
The builder creates a single MCR instance for each MATLAB Builder NE
component in an application. This MCR is reused and shared among all
subsequent class instances within the component, resulting in more efficient
memory usage and eliminating the MCR startup cost in each subsequent
class instantiation. All class instances share a single MATLAB workspace
and share global variables in the M-files used to build the component.

The following example creates a .NET component called mycomponent
containing a single .NET class named myclass with methods foo and bar.

If and when multiple instances of myclass are instantiated in an application,
only one MCR is initialized, and it is shared by all instances of myclass.

mcc -B 'dotnet:mycomponent,myclass,1.1,Private' foo.m bar.m

2-9

2 Building and Packaging a .NET Component

What Happens in the Packaging Process?
The package process zips the following files into a single self-extracting
executable, componentName.exe:

• componentName.dll

• componentName.ctf

• componentName.xml

• componentName.pdb (if Debug option is selected)

• MCRInstaller.exe (if Include MCR option is selected)

• _install.bat (Script run by the self-extracting executable)

2-10

How Does Component Deployment Work?

How Does Component Deployment Work?
To deploy the component, run the component installer. If the MCR is not
already installed, and if the Install MCR option was selected, the component
installer does the following:

1 Installs the MCR (if not already installed on the target machine)

2 Installs the component assembly in the directory from which the installer
is run

3 Copies the MWArray assembly to the Global Assembly Cache (GAC), as
part of installing the MCR

Note Since installing the MCR requires write access to the system registry,
you must have administrator privileges to run the MCR Installer.

Note On target machines where the MCR Installer is
run, the MCR Installer puts the MWArray assembly in
installation_directory\toolbox\dotnetbuilder\bin\\architecture
\version_number.

Version 1.1 or 2.0 of Microsoft® .NET Framework is installed on a Win32
platform depending on the versions of .NET Framework installed on the
target machines. Only version 2.0 is installed with Win64.

The MCR Installer uses a standard Microsoft installation file that provides
the following features:

• Integrates with Add/Remove Programs in the Control Panel

• Checks software prerequisites before installation

• Checks for proper user permissions

• Rolls back the system to its prior state on installation failure

• Supports component versioning

2-11

2 Building and Packaging a .NET Component

Executing MATLAB® Functions via the World Wide Web
You can facilitate access to MATLAB® code through the World Wide Web by
using the MATLAB® Builder™ NE product to create a COM object or .NET
component that you access from a Web browser.

2-12

3

Using Components Created
by the MATLAB® Builder™
NE Product

To use a .NET component built and packaged by the MATLAB® Builder™ NE
product, perform the following tasks.

Installing the Components on the
Development Machine (p. 3-3)

How to unpack and install the
components so you can use them on
a particular machine

Specifying Component Assembly and
Namespace (p. 3-4)

How to specify the assembly and
namespace

Creating an Instance of the Class
(p. 3-5)

Sample code for instantiating a class
that encapsulates MATLAB® code

Converting Native Data Types to
MATLAB® Data Types (p. 3-6)

How to specify types and use
MWArray to handle arguments

Handling Errors (p. 3-16) How to handle an error generated by
MATLAB

Managing Native Resources (p. 3-18) How to free memory used by the
MWArray data conversion classes

3 Using Components Created by the MATLAB® Builder™ NE Product

Accessing Real or Imaginary
Components Within Complex Arrays
(p. 3-23)

Describes how to extract only
the real or imaginary part of an
array through implementation of
component indexing.

Blocking Execution of a Console
Application that Creates Figures
(p. 3-26)

How to handle interaction in a
console-based program that creates
MATLAB figures

3-2

Installing the Components on the Development Machine

Installing the Components on the Development Machine
To use components on a particular development machine, you deploy the .ctf
file and .dll files (componentname.ctf and componentname.dll) along with
the MCR. You must do this even if you are not using the packaging process
outlined in Chapter 2, “Building and Packaging a .NET Component”.

1 Unpack and install the components on the machine.

2 Copy packagename.exe to a directory on the development machine, and
run it.

You must repeat these steps for each machine where the component will be
used.

3-3

3 Using Components Created by the MATLAB® Builder™ NE Product

Specifying Component Assembly and Namespace
To use the component assembly generated using the MATLAB® Builder™ NE
product from the client application, you must

• Reference the namespace for the MATLAB® data conversion assembly, as
shown:

using MathWorks.MATLAB.Arrays;

• Reference the namespace for the builder assembly generated for your
particular component, for example:

using MyComponentName;

Note The builder supports nested namespaces.

Suppose you named the component you created MyComponentName and you
want to use it in a program named MyApp.cs. Here are the statements to use
at the beginning of MyApp.cs:

using System;
using MathWorks.MATLAB.Arrays;
using MyComponentName;

Note The builder supports shared assemblies. To build your component as a
shared assembly, click the Settings button in the Deployment Tool toolbar,
and select .NET in the navigation pane. On the .NET page, select public.
Alternatively, you can use the mcc - B option with the dotnet bundle; see
“Using the Command Line to Create .NET Components” on page 1-6.

3-4

Creating an Instance of the Class

Creating an Instance of the Class
As with any .NET class, you need to instantiate the classes you create with the
MATLAB® Builder™ NE product before you can use them in your program.

Suppose you build a component with a class named MyComponentClass. Here
is an example of creating an instance of that class.

MyComponentClass classInstance = new MyComponentClass();

See “How the MCR Is Shared Among Classes” on page 2-9 for information
about what happens when you instantiate classes.

3-5

3 Using Components Created by the MATLAB® Builder™ NE Product

Converting Native Data Types to MATLAB® Data Types

In this section...

“Example: Native Data Conversion” on page 3-6

“Specifying the Type” on page 3-7

“Specifying Optional Arguments” on page 3-7

“Handling MATLAB® Global Variables” on page 3-11

“Handling Return Values” on page 3-11

Example: Native Data Conversion
The call signature for methods based on a MATLAB® function use one of the
MATLAB data conversion classes to pass arguments and return output.

This example explicitly creates a numeric constant using the constructor for
the MWNumericArray class with a System.Int32 argument. This argument
can then be used as an argument to one of the generated MATLAB® Builder™
NE methods.

int data = 24;
MWNumericArray array = new MWNumericArray(data);
Console.WriteLine("Array is of type " + array.NumericType);

When you run this example, the results are

Array is of type double

In this example, the native integer (int data) is converted to an
MWNumericArray containing a 1-by-1 MATLAB double array, which is the
default MATLAB type.

Note To preserve the integer type (rather than convert to the default double
type), you can use the constructor provided by MWNumericArray for this
purpose. Preserving the integer type can help to save space.

3-6

Converting Native Data Types to MATLAB® Data Types

The MATLAB Builder NE product does not support some MATLAB array
types because they are not CLS-compliant. See “Unsupported MATLAB®

Array Types” on page 7-6 for a list of the unsupported types.

For more information about the concepts involved in data conversion, see
“How Does the MATLAB® Builder™ NE Product Handle Data?” on page 2-4.

Specifying the Type
If you want to create a MATLAB numeric array of a specific type, set the
optional makeDouble argument to False. The native type then determines the
type of the MATLAB array that is created.

Here, the code specifies that the array should be constructed as a MATLAB
1-by-1 16-bit integer array:

short data = 24;
MWNumericArray array = new MWnumericArray(data, False);
Console.WriteLine("Array is of type " + array.NumericType);

Running this example produces the following results:

Array is of type int16

Specifying Optional Arguments
In the MATLAB product, varargin and varargout are used to specify
arguments that are not required. Consider the following M-function:

function y = mysum(varargin)
y = sum([varargin{:}]);

This function returns the sum of the inputs. The inputs are provided as a
varargin, which means that the caller can specify any number of inputs to
the function. The result is returned as a scalar double array.

For the mysum function, the MATLAB Builder NE product generates the
following interfaces:

// Single output interfaces
public MWArray mysum()

3-7

3 Using Components Created by the MATLAB® Builder™ NE Product

public MWArray mysum(params MWArray[] varargin)
// Standard interface
public MWArray[] mysum(int numArgsOut)
public MWArray[] mysum(int numArgsOut, params MWArray[] varargin)
// feval interface
public void mysum(int numArgsOut, ref MWArray ArgsOut,

params MWArray[] varargin)

The varargin arguments can be passed as either an MWArray[], or as a list of
explicit input arguments. (In C#, the params modifier for a method argument
specifies that a method accepts any number of parameters of the specific
type.) Using params allows your code to add any number of optional inputs to
the encapsulated M-function.

Here is an example of how you might use the mysum method in a .NET
application:

[STAThread]
static void Main(string[] args]
{
MWArray sum= null;
MySumClass mySumClass = null;
try

{
mySumClass= new MySumClass();
sum= mySumClass.mysum((double)2, 4);
Console.WriteLine("Sum= {0}", sum);
sum= mySumClass.mysum((double)2, 4, 6, 8);
Console.WriteLine("Sum= {0}", sum);

}
}

The number of input arguments can vary.

3-8

Converting Native Data Types to MATLAB® Data Types

Note For this particular signature, you must explicitly cast the first
argument to MWArray or a type other than integer. Doing this distinguishes
the signature from the method signature, which takes an integer as the first
argument. If the first argument is not explicitly cast to MWArray or as a
type other than integer, the argument can be mistaken as representing the
number of output arguments.

Examples of Passing Input Arguments
The following examples show generated code for the myprimes M-function,
which has the following definition:

function p = myprimes(n)

Construct a Single Input Argument. The following sample code constructs
data as a MWNumericArray, to be passed as input argument:

MWNumericArray data = 5;
MyPrimesClass myClass = new MyPrimesClass();
MWArray primes = myClass.myPrimes(data);

Pass a Native .NET Type. This example passes a native double type to
the function.

MyPrimesClass myClass = new MyPrimesClass();
MWArray primes = myClass.myPrimes((double)13));

The input argument is converted to a MATLAB 1-by-1 double array, as
required by the M-function. This is the default conversion rule for a native
double type (see “Data Conversion Rules ” on page 7-4 for a discussion of the
default data conversion for all supported .NET types).

Use the feval Interface. This interface passes both input and output
arguments on the right-hand side of the function call. The output argument
primes must be preceded by a ref attribute.

MyPrimesClass myClass = new MyPrimesClass();
MWNumericArray maxPrimes = 13;
MWArray primes = null;

3-9

3 Using Components Created by the MATLAB® Builder™ NE Product

myClass.myPrimes(1, ref primes, maxPrimes);

Passing Array Inputs
The next example implements a more general method that takes an array
of .NET numeric primitives and converts each to an MWNumericArray that
is then passed to the mySum function (see “Specifying Optional Arguments”
on page 3-7 for the listing of mysum).

public double getsum(int[] argsIn)
{
MWArray sum= null;
MWArray[] argsInArray;
MySumClass mySumClass= null;
try

{
argsInArray= new MWArray[argsIn.Length];
for (int idx= 0; idx <argsIn.Length; idx++)
{

argsInArray[idx]= new MWNumericArray((double)argsIn[idx]);
}
mySumClass= new MySumClass();
sum= mySumClass.mysum(argsInArray);
return (double)sum;

}
}

Passing a Variable Number of Outputs
When present, varargout arguments are handled in the same way that
varargin arguments are handled. Consider the following M-function:

function varargout = randvectors()
for i=1:nargout

varargout{i} = rand(1, i);
end

This function returns a list of random double vectors such that the length
of the ith vector is equal to i. The builder generates a .NET interface to
this function as follows:

3-10

Converting Native Data Types to MATLAB® Data Types

public void randvectors()
public MWArray[] randvectors(int numArgsOut)
public void randvectors(int numArgsOut, ref MWArray[] varargout)

Handling MATLAB® Global Variables
When programming with the builder components, you should be aware that
an instance of the MCR is created for each instance of a new class. If the same
class is instantiated again using a different variable name, it is attached to
the MCR created by the previous instance of the same class. In short, if an
assembly contains n unique classes, there will be maximum of n instances
of MCRs created, each corresponding to one or more instances of one of the
classes.

Therefore, avoid using global variables that cross over from one class or
instance to another.

Handling Return Values
The previous examples show guidelines to use if you know the type
and dimensionality of the output argument. Sometimes, in MATLAB
programming, this information is unknown, or can vary. In this case, the code
that calls the method might need to query the type and dimensionality of
the output arguments.

There are two ways to make the query; you can either

• Use .NET reflection to query any object for its type.

• Use any of several methods provided by the MWArray class to query
information about the underlying MATLAB array.

Use .NET Reflection
You can use reflection to dynamically create an instance of a type, bind the
type to an existing object, or get the type from an existing object. You can then
invoke the type’s methods or access its fields and properties. See the MSDN
Library for more information about reflection.

3-11

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconReflectionOverview.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/cpguide/html/cpconReflectionOverview.asp

3 Using Components Created by the MATLAB® Builder™ NE Product

The following code sample calls the myprimes method, and then determines
the type using reflection. The example assumes that the output is returned as
a numeric vector array but the exact numeric type is unknown.

public void GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
Array primesArray= ((MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

if (primesArray is double[])
{
double[] doubleArray= (double[])primesArray;
/* Do something with doubleArray . . . */
}

else if (primesArray is float[])
{
float[] floatArray= (float[])primesArray;
/* Do something with floatArray . . . */
}

else if (primesArray is int[])
{
int[] intArray= (int[])primesArray;
/*Do something with intArray . . . */
}

else if (primesArray is long[])
{
long[] longArray= (long[])primesArray;
/*Do something with longArray . . . */
}

else if (primesArray is short[])
{
short[] shortArray= (short[])primesArray;
/*Do something with shortArray . . . */
}

else if (primesArray is byte[])

3-12

Converting Native Data Types to MATLAB® Data Types

{
byte[] byteArray= (byte[])primesArray;
/*Do something with byteArray . . . */
}

else
{
throw new ApplicationException("
Bad type returned from myprimes");

}
}

The example uses the toVector method to return a .NET primitive array
(primesArray), which represents the underlying MATLAB array. See the
following code fragment from the example:

primes= myPrimesClass.myprimes((double)n);
Array primesArray= ((MWNumericArray)primes).
ToVector(MWArrayComponent.Real);

Note toVector is a method of the MWNumericArray class. It returns a copy of
the array component in column major order. The type of the array elements is
determined by the data type of the numeric array.

Using MWArray Query
The next example uses the MWNumericArray NumericType method, along
with MWNumericType enumeration to determine the type of the underlying
MATLAB array. See the switch (numericType) statement.

public void GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
if ((!primes.IsNumericArray) || (2 !=
primes.NumberofDimensions))

3-13

3 Using Components Created by the MATLAB® Builder™ NE Product

{
throw new ApplicationException("Bad type returned
by mwprimes");

}
MWNumericArray _primes= (MWNumericArray)primes;
MWNumericType numericType= _primes.NumericType;
Array primesArray= _primes.ToVector(
MWArrayComponent.Real);

switch (numericType)
{
case MWNumericType.Double:
{
double[] doubleArray= (double[])primesArray;
/* (Do something with doubleArray . . .) */
break;
}

case MWNumericType.Single:
{
float[] floatArray= (float[])primesArray;
/* (Do something with floatArray . . .) */
break;
}

case MWNumericType.Int32:
{
int[] intArray= (int[])primesArray;
/* (Do something with intArray . . .) */
break;
}

case MWNumericType.Int64:
{
long[] longArray= (long[])primesArray;
/* (Do something with longArray . . .) */
break;
}

case MWNumericType.Int16:
{
short[] shortArray= (short[])primesArray;
/* (Do something with shortArray . . .) */
break;
}

3-14

Converting Native Data Types to MATLAB® Data Types

case MWNumericType.UInt8:
{
byte[] byteArray= (byte[])primesArray;
/* (Do something with byteArray . . .) */
break;
}

default:
{
throw new ApplicationException("Bad type returned
by myprimes");

}
}

}

The code in the example also checks the dimensionality by calling
NumberOfDimensions; see the following code fragment:

if ((!primes.IsNumericArray) || (2 !=
primes.NumberofDimensions))
{
throw new ApplicationException("Bad type returned
by mwprimes");

This call throws an exception if the array is not numeric and of the proper
dimension.

3-15

3 Using Components Created by the MATLAB® Builder™ NE Product

Handling Errors
Errors that occur during execution of an M-function or during data conversion
are signaled by a standard .NET exception. This includes MATLAB® run-time
errors as well as errors in your M-code.

Like any other .NET application, an application that calls a method generated
by the MATLAB® Builder™ NE product can handle errors by either

• Catching and handling the exception locally

• Allowing the calling method to catch it

Here are examples for each way of handling errors.

In the GetPrimes example the method itself handles the exception.

public double[] GetPrimes(int n)
{
MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{
myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).

ToVector(MWArrayComponent.Real);
}

catch (Exception ex)
{
Console.WriteLine("Exception: {0}", ex);
return new double[0];
}

}

In the next example, the method that calls myprimes does not catch the
exception. Instead, its calling method (that is, the method that calls the
method that calls myprimes) handles the exception.

public double[] GetPrimes(int n)
{

3-16

Handling Errors

MWArray primes= null;
MyPrimesClass myPrimesClass= null;
try
{

myPrimesClass= new MyPrimesClass();
primes= myPrimesClass.myprimes((double)n);
return (double[])(MWNumericArray)primes).

ToVector(MWArrayComponent.Real);
}

catch (Exception e)
{

throw;
}

}

3-17

3 Using Components Created by the MATLAB® Builder™ NE Product

Managing Native Resources

In this section...

“CLR Memory Manager” on page 3-18

“Using Automated Garbage Collection ” on page 3-18

“Alternative Ways to Free Native Resources” on page 3-20

CLR Memory Manager
MWArray data conversion classes use native resources. That is, each class in
the MWArray class hierarchy is a managed wrapper class that encapsulates
a MATLAB® mxArray, which is allocated from the native memory heap.
Because the managed wrapper is small and the mxArray is comparatively
large, the CLR memory manager usually does not call the garbage collector
before the native memory becomes exhausted or badly fragmented.

Using Automated Garbage Collection
The recommended way to free native resources is to use the automated
garbage collection provided by the MWArray classes.

The instantiation of an MWArray class creates a very small managed wrapper,
which usually encapsulates a moderate to large mxArray, which is allocated
from the native heap. During the execution of the application, as MWArray
types continue to be instantiated, the native heap allocation continues to grow
significantly while the managed memory allocation for the wrapper classes
remains relatively small. As a result, the CLR garbage collector is called very
infrequently, and the native heap becomes quickly depleted.

To address these issues, the MWArray data conversion classes keep track of the
approximate size of the native memory allocations used by the encapsulated
mxArrays. When a specified memory allocation threshold is reached, the CLR
garbage collector is explicitly called to release any unused MWArray instances.
When the CLR calls the finalizer for these instances, it frees the native
memory allocated for the encapsulated mxArray. As a result, your code does
not need to call a destructor explicitly.

3-18

Managing Native Resources

Note The default memory management scheme for all MATLAB® Builder™
NE components is to have the automatic memory management enabled with a
threshold block size of 10 MB. You can change the default.

Use the native GC assembly attribute to explicitly enable or disable the
MWArray memory management service and to specify the native memory
allocation threshold.

The following C# segment explicitly enables memory management and sets
the memory allocation threshold to 100M.

[assembly: NativeGC(true, GCBlockSize=100)]

Remember that if you do nothing, the default is to have the native memory
management feature enabled.

The next two code segments are from “Magic Square Example” on page
1-9. They demonstrate how an application using MATLAB Builder NE
components handles memory resource issues, with memory management
disabled and enabled, respectively.

Managing Resources with Memory Management Disabled

MWArray Memory Management Disabled:

[assembly: NativeGC(false)]

.

.

.

int arraySize= System.Int32.Parse(args[0]);

MagicSquare magic= new MagicSquare();

// Return a magic square of the specified size

// Note: the memory allocated by the explicit cast to an MWArray

// scalar will not be released even by the finally clause.

3-19

3 Using Components Created by the MATLAB® Builder™ NE Product

magicSquare= magic.makesquare((MWArray)arraySize);

}

finally

{

// Explicitly free the native heap allocation for the magic square

if (null != (Object)magicSquare) magicSquare.Dispose();

}

Managing Resources with Memory Management Enabled

MWArray Memory Management Enabled:

[assembly: NativeGC(true)] //Note that this is the default

.

.

.

MagicSquare magic= new MagicSquare();

// Return a magic square of the specified size

magicSquare= magic.makesquare((MWArray)arraySize);

// It is not necessary to call magicSquare.Dispose(). The native

// memory allocated for it and the explicit cast will be

// automatically recovered by the CLR garbage collector when the

// memory allocation threshold is reached.

Alternative Ways to Free Native Resources
The automatic garbage collection provided by the builder is the default as well
as the recommended mechanism for memory management. If you do not
choose to use the automatic garbage collection provided by the builder, you
might fail to discover memory usage generated by the the builder because
this memory usage is not always immediately visible to the user. Examples
include implicit casts to the MWArray types.

Nonetheless, you can choose not to use the automatic garbage collection
provided by the builder; instead, you could use any of the following
alternatives:

3-20

Managing Native Resources

• “Using Garbage Collection Provided by the CLR” on page 3-21

• “Freeing Native Resources by Finalizing” on page 3-21

• “Using Dispose to Explicitly Free Resources” on page 3-22

Using Garbage Collection Provided by the CLR
When you create a new instance of a .NET class, the CLR allocates and
initializes the new object. When this object goes out of scope, or becomes
otherwise unreachable, it becomes eligible for garbage collection. The memory
allocated by the object is eventually freed when the garbage collector is run.

MWArray objects also allocate space for native resources. Although these
resources can be quite large, they are not visible to the CLR and will not be
released by the class finalizer until the CLR determines that it is appropriate
to run the garbage collector. To avoid exhausting the unmanaged memory
heap, MWArray objects should be explicitly freed as soon as possible by the
application that creates them (if automatic garbage collection has not been
enabled).

Freeing Native Resources by Finalizing
The .NET Framework provides a semiautomatic mechanism called finalization
to help clean up native resources just before garbage collection of the managed
object. Objects that want to implement finalization do so by overriding the
Object.Finalize method in their implementation. (How to override the
Object.Finalize method depends on the language your are using; refer to
your language reference for detailed information on how to override.)

The CLR invokes Object.Finalize just before garbage collection. There is no
guarantee, however, on when garbage collection will take place.

An application has two ways to free native resources:

• Indeterminate — The CLR calls the Finalize destructor method for
MWArray during garbage collection.

• Determinate — You call the MWArray Dispose method explicitly.

3-21

3 Using Components Created by the MATLAB® Builder™ NE Product

Using Dispose to Explicitly Free Resources
The following example allocates an 8 MB native array. To the CLR, the size
of the wrapped object is just a few bytes (the size of the MWNumericArray
wrapper instance) and thus not of significant size to trigger the garbage
collector. For this reason, it is good practice to free the MWArray explicitly,
unless you are using automatic garbage collection provided by the data
conversion classes. This ensures that the native array is also freed as part of
running the finalizer method.

Usually the Dispose method is called from a finally section in a try-finally
block as you can see in the following example:

try
{

/* Allocate a huge array */
MWNumericArray array = new MWNumericArray(1000,1000);

.

. (use the array)

.
}

finally
{

/* Explicitly dispose of the managed array and its */
/* native resources */

if (null != array)
{

array.Dispose();
}

}

The statement array.Dispose() frees the memory allocated by both the
managed wrapper and the native MATLAB array.

The MWArray class provides two disposal methods: Dispose and
DisposeArray. The DisposeArray method is more general in that it disposes
of either a single MWArray or an array of arrays of type MWArray.

3-22

Accessing Real or Imaginary Components Within Complex Arrays

Accessing Real or Imaginary Components Within Complex
Arrays

In this section...

“Extracting Real or Imaginary Components” on page 3-23

“Returning Values with Component Indexing” on page 3-23

“Assigning Values with Component Indexing” on page 3-24

“Converting MATLAB® Arrays to .NET Arrays Using Component Indexing”
on page 3-25

Extracting Real or Imaginary Components
When you access a complex array (an array made up of both real and
imaginary data), you extract both real and imaginary parts (called
components) by default. This method call, for example, extracts both real
and imaginary components:

MWNumericArray complexResult= complexDouble[1, 2];

It is also possible, when calling a method to return or assign a value, to
extract only the real or imaginary component of a complex matrix. To do this,
call the appropriate method using component indexing.

This section describes how to use component indexing when returning or
assigning a value, and also describes how to use component indexing to
convert MATLAB® arrays to .NET arrays using the ToArray or ToVector
methods.

Returning Values with Component Indexing
The following section illustrates how to return values from full and sparse
arrays using component indexing.

Implementing Component Indexing on Full Complex Numeric
Arrays
To return the real or imaginary component from a full complex numeric array,
call the .real or .imaginary method on MWArrayComponent as follows:

3-23

3 Using Components Created by the MATLAB® Builder™ NE Product

complexResult= complexDouble[MWArrayComponent.Real, 1, 2];

complexResult= complexDouble[MWArrayComponent.Imaginary, 1, 2];

Implementing Component Indexing on Sparse Complex
Numeric Arrays (Microsoft® Visual Studio® 8 and Higher)
To return the real or imaginary component of a sparse complex numeric array,
call the .real or .imaginary method MWArrayComponent as follows:

complexResult= sparseComplexDouble[MWArrayComponent.Real, 4, 3];

complexResult = sparseComplexDouble[MWArrayComponent.Imaginary, 4, 3];

Assigning Values with Component Indexing
The following section illustrates how to assign values to full and sparse arrays
using component indexing.

Implementing Component Indexing on Full Complex Numeric
Arrays
To assign the real or imaginary component to a full complex numeric array,
call the .real or .imaginary method MWArrayComponent as follows:

matrix[MWArrayComponent.Real, 2, 2]=

complexDouble [MWArrayComponent.Real, 1, 2];

matrix[MWArrayComponent.Imaginary, 2, 2]=

complexDouble [MWArrayComponent.Real, 1, 2];

Implementing Component Indexing on Sparse Complex
Numeric Arrays (Microsoft® Visual Studio® 8 and Higher)
To assign the real or imaginary component to a sparse complex numeric array,
call the .real or .imaginary method on MWArrayComponent as follows:

matrix[MWArrayComponent.Real, 3, 2]=

sparseComplexDouble[MWArrayComponent.Real, 2, 1];

matrix[MWArrayComponent.Imaginary, 3, 2]=

sparseComplexDouble[MWArrayComponent.Imaginary, 2, 1];

3-24

Accessing Real or Imaginary Components Within Complex Arrays

Converting MATLAB® Arrays to .NET Arrays Using
Component Indexing
The following section illustrates how to use the ToArray and ToVector
methods to convert full and sparse MATLAB arrays and vectors to .NET
arrays and vectors respectively.

Note Microsoft® Visual Studio® 7 does not support working with sparse
array component indexing and ToArray and ToVector.

Converting MATLAB® Arrays to .NET Arrays
To convert MATLAB arrays to ,NET arrays call the .real or .imaginary
method, as needed, on MWArrayComponent as follows:

Array nativeArray= matrix.ToArray(MWArrayComponent.Real);

Array nativeArray= matrix.ToArray(MWArrayComponent.Imaginary);

Converting MATLAB® Arrays to .NET Vectors
To convert MATLAB vectors to ,NET vectors call the .real or .imaginary
method, as needed, on MWArrayComponent as follows:

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Real);

Array nativeArray= sparseMatrix.ToVector(MWArrayComponent.Imaginary);

3-25

3 Using Components Created by the MATLAB® Builder™ NE Product

Blocking Execution of a Console Application that Creates
Figures

In this section...

“The WaitForFiguresToDie Method” on page 3-26

“Code Fragment: Using WaitForFiguresToDie to Block Execution” on page
3-27

The WaitForFiguresToDie Method
The MATLAB® Builder™ NE product adds a special WaitForFiguresToDie
method to each .NET class that it creates. WaitForFiguresToDie takes no
arguments. Your application can call WaitForFiguresToDie any time during
execution.

The purpose of WaitForFiguresToDie is to block execution of a calling
program as long as figures created in encapsulated M-code are displayed.
Typically you use WaitForFiguresToDie when:

• There are one or more figures open that were created by a .NET component
created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When WaitForFiguresToDie is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Note Consider using the console.readline method when possible as it
accomplishes much of this functionality in a standardized manner.

Use caution when calling the WaitForFiguresToDie method. Calling this
method from an interactive program, such as Microsoft® Excel®, can hang the
application. This method should be called only from console-based programs.

3-26

Blocking Execution of a Console Application that Creates Figures

Code Fragment: Using WaitForFiguresToDie to Block
Execution
The following example illustrates using WaitForFiguresToDie from a .NET
application. The example uses a .NET component created by the MATLAB
Builder NE product; the object encapsulates M-code that draws a simple plot.

1 Create a work directory for your source code. In this example, the directory
is D:\work\plotdemo.

2 In this directory, create the following M-file:

drawplot.m

function drawplot()
plot(1:10);

3 Use MATLAB Builder NE to create a .NET component with the following
properties:

Component name Figure

Class name Plotter

4 Create a .NET program in a file named runplot with the following code:

using Figure.Plotter;

public class Main {
public static void main(String[] args) {

try {
plotter p = new Plotter();
try {

p.showPlot();
p.WaitForFiguresToDie();

}
catch (MWException e) {
console.writeline(e);

}
}

}

3-27

3 Using Components Created by the MATLAB® Builder™ NE Product

}

5 Compile the application.

When you run the application, the program displays a plot from 1 to 10 in
a MATLAB® figure window. The application ends when you dismiss the
figure.

Note To see what happens without the call to WaitForFiguresToDie,
comment out the call, rebuild the application, and run it. In this case, the
figure is drawn and is immediately destroyed as the application exits.

3-28

4

Sample Applications (C#)

Note The examples for the MATLAB® Builder™ NE product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber, where
matlabroot is the directory where the MATLAB® product is installed and
VSversionnumber specifies the version of Microsoft® Visual Studio® .NET you
are using (VS7 or VS8, also known as Microsoft Visual Studio .NET 2003 and
Microsoft Visual Studio 2005, respectively). If you have Microsoft Visual
Studio .NET installed, you can load projects for all the examples by opening the
solution matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber
\DotNetExamples.sln.

Creating a Simple Plot (p. 4-3) How to encapsulate a MATLAB
function that draws a plot given two
input arguments

Passing Variable Arguments (p. 4-8) How to pass a variable number of
arguments

Creating a Spectral Analysis (p. 4-14) How to create a .NET component
containing more than one class

Matrix Math Example (p. 4-22) How to assign more than one
MATLAB function to a component
class

Phonebook Example (p. 4-31) How to encapsulate a MATLAB
function that draws a plot given two
input arguments

4 Sample Applications (C#)

Note In addition to these examples, see “Magic Square Example” on page
1-9 for a simple example that gets you started using the MATLAB Builder
NE product.

4-2

Creating a Simple Plot

Creating a Simple Plot
The purpose of the example is to show you how to

• Use the MATLAB® Builder™ NE product to convert a MATLAB® function
(drawgraph) to a method of a .NET class (Plotter) and wrap the class in a
.NET component (PlotDemoComp).

• Access the component in a C# application (PlotDemoApp.cs) by
instantiating the Plotter class and using the MWArray class library to
handle data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online only).

• Build and run the PlotDemoApp application, using the Visual Studio® .NET
development environment.

The drawgraph function displays a plot of input parameters x and y.

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with the MATLAB product to
your work directory:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\PlotExample

b. At the MATLAB command prompt, cd to the new PlotExample
subdirectory in your work directory.

2 Write the drawgraph function as you would any MATLAB function.

This code is already in your work directory in
PlotExample\PlotDemoComp\drawgraph.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

4-3

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

4 Sample Applications (C#)

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder for .NET
and .NET Component.

6 Select plotdemo as the name of the project and click OK.

7 In the Deployment Tool, select plotdemo.class and right-click. Select
Rename and type plotter.

8 Select Generate Verbose Output.

9 Add the drawplot.m file to the project

10 Save the project.

11 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool. The files that are needed for the component
are copied to two newly created subdirectories, src and distrib, in the
PlotDemoComp directory. A copy of the build log is placed in the src
directory.

See “What Happens in the Build Process?” on page 2-8 for more information.

12 Write source code for a C# application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\PlotExample
\PlotDemoCSharpApp\PlotDemoApp.cs.

The program listing is shown here.

PlotDemoApp.cs

// ***

//

4-4

Creating a Simple Plot

// PlotDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using PlotDemoComp;

// Set native memory management block size to 25 MB.

[assembly: NativeGC(true, GCBlockSize= 25)]

namespace MathWorks.Demo.PlotDemoApp

{

/// This application demonstrates plotting x-y data

/// by graphing a simple parabola into a MATLAB figure

/// dialog box.

/// class PlotDemoApp

{

#region MAIN

/// The main entry point for the application.

/// [STAThread]

static void Main(string[] args)

{

try

{

const int numPoints= 10; // Number of points to plot

// Allocate native array for plot values

double [,] plotValues= new double[numPoints, 2];

4-5

4 Sample Applications (C#)

// Plot 5x vs x^2

for (int x= 1; x <= numPoints; x++)

{

plotValues[x-1,0]= x*5;

plotValues[x-1,1]= x*x;

}

// Create a new plotter object

Plotter plotter= new Plotter();

// Plot the two sets of values.

// Note the automatic conversion of the native array

// to a MATLAB array.

plotter.drawgraph((MWNumericArray)plotValues);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object .

• Calls the drawgraph method to plot the equation using the MATLAB
plot function.

• Uses MWNumericArray to represent the data needed by the drawgraph
method to plot the equation.

• Uses a try-catch block to catch and handle any exceptions.

4-6

Creating a Simple Plot

The statement

Plotter plotter= new Plotter();

creates an instance of the Plotter class, and the statement

plotter.drawgraph((MWNumericArray)plotValues);

explicitly casts the native plotValues to MWNumericArray and then calls
the method drawgraph.

13 Build the PlotDemoApp application using Visual Studio .NET.

a. The PlotDemoCSharpApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET by
double-clicking PlotDemoCSharpApp.csproj in Windows® Explorer.
You can also open it from the MATLAB desktop by right-clicking
PlotDemoCSharpApp.csproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to the PlotDemoComp
component which you built in a previous step. (The component,
PlotDemo.dll, is in the \PlotExample\PlotDemoComp\distrib
subdirectory of your work area.)

14 Build and run the application in Visual Studio .NET.

4-7

4 Sample Applications (C#)

Passing Variable Arguments

Note This example is similar to “Creating a Simple Plot” on page 4-3, except
that the MATLAB® function to be encapsulated takes a variable number of
arguments instead of just one.

The purpose of the example is to show you the following:

• How to use the builder to convert a MATLAB function, drawgraph, which
takes a variable number of arguments, to a method of a .NET class
(Plotter) and wrap the class in a .NET component (VarArgDemoComp). The
drawgraph function (which can be called as a method of the Plotter class)
displays a plot of the input parameters.

• How to access the component in a C# application (VarArgDemoApp.cs) by
instantiating the Plotter class and using MWArray to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online only).

• How to build and run the VarArgDemoApp application, using the Visual
Studio® .NET development environment.

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with the MATLAB product to
your work directory:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\VarArgExample

b. At the MATLAB command prompt, cd to the new VarArgExample
subdirectory in your work directory.

2 Write the MATLAB functions as you would any MATLAB function.

4-8

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Passing Variable Arguments

The code for the functions in this example is as follows:

drawgraph.m

function [xyCoords] = DrawGraph(colorSpec, varargin)

...

numVarArgIn= length(varargin);

xyCoords= zeros(numVarArgIn, 2);

for idx = 1:numVarArgIn

xCoord = varargin{idx}(1);

yCoord = varargin{idx}(2);

x(idx) = xCoord;

y(idx) = yCoord;

xyCoords(idx,1) = xCoord;

xyCoords(idx,2) = yCoord;

end

xmin = min(0, min(x));

ymin = min(0, min(y));

axis([xmin fix(max(x))+3 ymin fix(max(y))+3])

plot(x, y, 'color', colorSpec);

extractcoords.m

function [varargout] = ExtractCoords(coords)

%EXTRACTCOORDS Extracts a variable number of two element x and y

% coordinate vectors from a two column array

% [VARARGOUT] = EXTRACTCOORDS(COORDS) Extracts x,y coordinates

$ from a two column array

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

4-9

4 Sample Applications (C#)

% $Revision: 1.1.4.38 $ $Date: 2008/01/23 04:59:38 $

for idx = 1:nargout

varargout{idx}= coords(idx,:);

end

This code is already in your work directory in
/VarArgExample/VarArgDemoComp/.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder for .NET
and .NET Component.

6 Select varargdemo as the name of the project and click OK.

7 In the Deployment Tool, select varargdemo.class and right-click. Select
Rename and type plotter.

8 Select Generate Verbose Output.

9 Add the drawgraph.m and extractcoords.m files to the project

10 Save the project.

11 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for
the component are copied to two newly created subdirectories, src and
distrib, in the VarArgDemoComp directory. A copy of the build log is placed
in the src directory.

See “What Happens in the Build Process?” on page 2-8 for more information.

4-10

Passing Variable Arguments

12 Write source code for an application that accesses the component.

The sample application for this example is in
VarArgExample\VarArgDemoCSharpApp\VarArgDemoApp.cs.

The program listing is shown here.

VarArgDemoApp.cs

// ***

//

// VarArgDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Arrays;

using VarArgDemoComp;

namespace MathWorks.Demo.VarArgDemoApp

{

/// <summary>

/// This application demonstrates how to call components having methods with varargin/vargout arguments.

/// </summary>

class VarArgDemoApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

4-11

4 Sample Applications (C#)

[STAThread]

static void Main(string[] args)

{

// Initialize the input data

MWNumericArray colorSpec= new double[]{0.9, 0.0, 0.0};

MWNumericArray data= new MWNumericArray(new int[,]{{1,2},{2,4},{3,6},{4,8},{5,10}});

MWArray[] coords= null;

try

{

// Create a new plotter object

Plotter plotter= new Plotter();

//Extract a variable number of two element x and y coordinate vectors from the data array

coords= plotter.extractcoords(5, data);

// Draw a graph using the specified color to connect the variable number of input coordinates.

// Return a two column data array containing the input coordinates.

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec,

coords[0], coords[1], coords[2],coords[3], coords[4]);

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

// Note: You can also pass in the coordinate array directly.

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec, coords);

Console.WriteLine("result=\n{0}", data);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

4-12

Passing Variable Arguments

}

}

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the
MWArray class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to represent the data needed by the methods

• Uses a try-catch block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph
method:

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec,

coords[0], coords[1], coords[2],coords[3], coords[4]);

...

data= (MWNumericArray)plotter.drawgraph((MWArray)colorSpec, coords);

13 Build the VarArgDemoApp application using Visual Studio .NET.

a. The VarArgDemoCSharpApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET by
double-clicking VarArgDemoCSharpApp.csproj in Windows® Explorer.
You can also open it from the MATLAB desktop by right-clicking
VarArgDemoCSharpApp.csproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to
the VarArgDemoComp component which you built in a
previous step. (The component, VarArgDemo.dll, is in the
\VarArgExample\VarArgDemoComp\distrib subdirectory of your
work area.)

14 Build and run the application in Visual Studio .NET.

4-13

4 Sample Applications (C#)

Creating a Spectral Analysis

In this section...

“Example Overview” on page 4-14

“Step-by-Step Procedure” on page 4-16

Example Overview
The purpose of the example is to show you the following:

• How to use the MATLAB® Builder™ NE product to create a component
(SpectraDemoComp) containing more than one class.

• How to access the component in a C# application (SpectraDemoApp.cs),
including use of the MWArray class hierarchy to represent data.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online only).

• How to build and run the application, using the Visual Studio® .NET
development environment.

The component SpectraDemo analyzes a signal and graphs the result. The
class, SignalAnalyzer, performs a Fast Fourier Transform (FFT) on an
input data array. A method of this class, computefft, returns the results
of that FFT as two output arrays–an array of frequency points and the
power spectral density. The second class, Plotter, graphs the returned data
using the plotfft method. These two methods, computefft and plotfft,
encapsulate MATLAB® functions.

The computefft method computes the FFT and power spectral density of the
input data and computes a vector of frequency points based on the length of
the data entered and the sampling interval. The plotfft method plots the
FFT data and the power spectral density in a MATLAB figure window. The
MATLAB code for these two methods resides in two M-files, computefft.m
and plotfft.m, which can be found in:

4-14

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Creating a Spectral Analysis

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\SpectraExample\SpectraDemoComp

computefft.m

function [fftData, freq, powerSpect] = ComputeFFT(data, interval)
%COMPUTEFFT Computes the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = COMPUTEFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2003 The MathWorks, Inc.
if (isempty(data))

fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftData = fft(data);
freq = (0:length(fftData)-1)/(length(fftData)*interval);
powerSpect = abs(fftData)/(sqrt(length(fftData)));

plotfft.m

function PlotFFT(fftData, freq, powerSpect)
%PLOTFFT Computes and plots the FFT and power spectral density.
% [FFTDATA, FREQ, POWERSPECT] = PLOTFFT(DATA, INTERVAL)
% Computes the FFT and power spectral density of the input data.
% This file is used as an example for the .NET Builder
% Language product.
% Copyright 2001-2003 The MathWorks, Inc.
len = length(fftData);

if (len <= 0)
return;

end
plot(freq(1:floor(len/2)), powerSpect(1:floor(len/2)))
xlabel('Frequency (Hz)'), grid on

4-15

4 Sample Applications (C#)

title('Power spectral density')

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with the MATLAB product to
your work directory:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\SpectraExample

b. At the MATLAB command prompt, cd to the new SpectraExample
subdirectory in your work directory.

2 Write the M-code that you want to access.

This example uses computefft.m and plotfft.m, which are already in
your work directory in SpectraExample\SpectraDemoComp.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder for .NET
and .NET Component.

6 Select spectrademo as the name of the project and click OK.

7 In the Deployment Tool, select spectrademo.class and right-click. Select
Rename and type PlotterSignalAnalyzer.

8 Select Generate Verbose Output.

9 Add the computefft.m and plotfft.m files to the project

10 Save the project.

11 Build the component by clicking the Build button in the Deployment Tool
toolbar.

4-16

Creating a Spectral Analysis

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for
the component are copied to two newly created subdirectories, src and
distrib, in the SpectraDemoComp directory. A copy of the build log is
placed in the src directory.

See “What Happens in the Build Process?” on page 2-8 for more information.

12 Write source code for an application that accesses the component.

The sample application for this example is in
SpectraExample\SpectraDemoCSharpApp\SpectraDemoApp.cs.

The program listing is shown here.

SpectraDemoApp.cs

// ***

//

// SpectraDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

using MathWorks.MATLAB.NET.Arrays;

using SpectraDemoComp;

namespace MathWorks.Demo.SpectraDemoApp

{

/// <summary>

4-17

4 Sample Applications (C#)

/// This application computes and plots the power spectral density of an input signal.

/// </summary>

class SpectraDemoApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

try

{

const double interval= 0.01; // The sampling interval

const int numSamples= 1001; // The number of samples

// Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

// random signal. Duration= 10; Sampling interval= 0.01

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, numSamples);

Random random= new Random();

// Initialize data

for (int idx= 1; idx <= numSamples; idx++)

{

double t= (idx-1)* interval;

data[idx]= Math.Sin(2.0*Math.PI*15.0*t) + Math.Sin(2.0*Math.PI*40.0*t) + random.NextDouble();

}

// Create a new signal analyzer object

SignalAnalyzer signalAnalyzer= new SignalAnalyzer();

// Compute the fft and power spectral density for the data array

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

// Print the first twenty elements of each result array

int numElements= 20;

MWNumericArray resultArray= new MWNumericArray(MWArrayComplexity.Complex, MWNumericType.Double, numElements);

4-18

Creating a Spectral Analysis

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[0])[idx];

}

Console.WriteLine("FFT:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[1])[idx];

}

Console.WriteLine("Frequency:\n{0}\n", resultArray);

for (int idx= 1; idx <= numElements; idx++)

{

resultArray[idx]= ((MWNumericArray)argsOut[2])[idx];

}

Console.WriteLine("Power Spectral Density:\n{0}", resultArray);

// Create a new plotter object

Plotter plotter= new Plotter();

// Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut[0], argsOut[1], argsOut[2]);

Console.ReadLine(); // Wait for user to exit application

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

}

#endregion

}

}

4-19

4 Sample Applications (C#)

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Creates an MWNumericArray array that contains the data

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

The following statement

MWNumericArray data= new MWNumericArray(MWArrayComplexity.Real,
MWNumericType.Double, numSamples);

shows how to use the MWArray class library to construct a MWNumeric
array that is used as method input to the computefft function.

The following statement

SignalAnalyzer signalAnalyzer = new SignalAnalyzer();

creates an instance of the class SignalAnalyzer, and the following
statement

MWArray[] argsOut= signalAnalyzer.computefft(3, data, interval);

calls the method computefft.

13 Build the SpectraDemoApp application using Visual Studio .NET.

a. The SpectraDemoCSharpApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET
by double-clicking SpectraDemoCSharpApp.csproj in Windows®

Explorer. You can also open it from the MATLAB desktop by
right-clicking SpectraDemoCSharpApp.csproj > Open Outside
MATLAB.

4-20

Creating a Spectral Analysis

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference
to the SpectraDemo component which you built in a
previous step. (The component, SpectraDemo.dll, is in the
\SpectraExample\SpectraDemoComp\distrib subdirectory of your
work area.)

14 Build and run the application in Visual Studio .NET.

4-21

4 Sample Applications (C#)

Matrix Math Example

In this section...

“Example Overview” on page 4-22

“MATLAB® Functions to Be Encapsulated” on page 4-23

“Understanding the MatrixMathDemo Program” on page 4-29

Example Overview
The purpose of the example is to show you the following:

• How to assign more than one MATLAB® function to a component class.

• How to manually handle native memory management by disabling the
default memory manager for MWArray.

• How to access the component in a C# application (MatrixMathDemoApp.cs)
by instantiating Factor and using the MWArray class library to handle
data conversion.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online only).

• How to build and run the MatrixMathDemoApp application, using the Visual
Studio® .NET development environment.

This example builds a .NET component to perform matrix math. The example
creates a program that performs Cholesky, LU, and QR factorizations on a
simple tridiagonal matrix (finite difference matrix) with the following form:

A = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

4-22

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Matrix Math Example

You supply the size of the matrix on the command line, and the program
constructs the matrix and performs the three factorizations. The original
matrix and the results are printed to standard output. You may optionally
perform the calculations using a sparse matrix by specifying the string
"sparse" as the second parameter on the command line.

MATLAB® Functions to Be Encapsulated
The following code defines the MATLAB functions used in the example.

cholesky.m

function [L] = Cholesky(A)

%CHOLESKY Cholesky factorization of A.

% L= CHOLESKY(A) returns the Cholesky factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.38 $ $Date: 2008/01/23 04:59:38 $

L = chol(A);

ludecomp.m

function [L,U] = LUDecomp(A)

%LUDECOMP LU factorization of A.

% [L,U]= LUDECOMP(A) returns the LU factorization of A.

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.38 $ $Date: 2008/01/23 04:59:38 $

[L,U] = lu(A);

qrdecomp.m

function [Q,R] = QRDecomp(A)

%QRDECOMP QR factorization of A.

% [Q,R]= QRDECOMP(A) returns the QR factorization of A.

4-23

4 Sample Applications (C#)

% This file is used as an example for the .NET Builder

% Language product.

% Copyright 2001-2003 The MathWorks, Inc.

% $Revision: 1.1.4.38 $ $Date: 2008/01/23 04:59:38 $

[Q,R] = qr(A);

Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with the MATLAB product to
your work directory:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\MatrixMathExample

b. At the MATLAB command prompt, cd to the new MatrixMathExample
subdirectory in your work directory.

2 Write the MATLAB functions as you would any MATLAB function.

The code for the cholesky, ludecomp, and qrdecomp functions is already in
your work directory in MatrixMathExample\MatrixMathDemoComp\.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder for .NET
and .NET Component.

6 Select MatrixMathDemo as the name of the project and click OK.

7 In the Deployment Tool, select MatrixMathDemo.class and right-click.
Select Rename and type factor.

8

4-24

Matrix Math Example

9 Select Generate Verbose Output.

10 Add the cholesky.m, ludecomp.m, and qrdecomp.m files to the project

11 Save the project.

12 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for
the component are copied to two newly created subdirectories, src and
distrib, in the MatrixMathDemoComp directory. A copy of the build log is
placed in the src directory.

See “What Happens in the Build Process?” on page 2-8 for more information.

13 Write source code for an application that accesses the component.

The sample application for this example is in
MatrixMathExample\MatrixMathDemoCSharpApp\MatrixMathDemoApp.cs.

The program listing is shown here.

MatrixMathDemoApp.cs

// ***

//

// MatrixMathDemoApp.cs

//

// This file is an example application for the MATLAB Builder NE product.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using MathWorks.MATLAB.NET.Utility;

4-25

4 Sample Applications (C#)

using MathWorks.MATLAB.NET.Arrays;

using MatrixMathDemoComp;

[assembly: NativeGC(false)] // Disable Automatic native memory management

namespace MathWorks.Demo.MatrixMathApp

{

/// <summary>

/// This application computes cholesky, LU, and QR factorizations of a finite difference matrix of order N.

/// The order is passed into the application on the command line.

/// </summary>

/// <remarks>

/// Command Line Arguments:

/// <newpara></newpara>

/// args[0] - Matrix order(N)

/// <newpara></newpara>

/// args[1] - (optional) sparse; Use a sparse matrix

/// </remarks>

class MatrixMathDemoApp

{

#region MAIN

/// <summary>

/// The main entry point for the application.

/// </summary>

[STAThread]

static void Main(string[] args)

{

bool makeSparse= true;

int matrixOrder= 4;

MWNumericArray matrix= null; // The matrix to factor

MWArray argOut= null; // Stores single factorization result

MWArray[] argsOut= null; // Stores multiple factorization results

try

{

4-26

Matrix Math Example

// If no argument specified, use defaults

if (0 != args.Length)

{

// Convert matrix order

matrixOrder= System.Int32.Parse(args[0]);

if (0 >= matrixOrder)

{

throw new ArgumentOutOfRangeException("matrixOrder", matrixOrder,

"Must enter a positive integer for the matrix order(N)");

}

makeSparse= ((1 < args.Length) && (args[1].Equals("sparse")));

}

// Create the test matrix. If the second argument is "sparse", create a sparse matrix.

matrix= (makeSparse)

? MWNumericArray.MakeSparse(matrixOrder, matrixOrder, MWArrayComplexity.Real,

(matrixOrder+(2*(matrixOrder-1))))

: new MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, matrixOrder, matrixOrder);

// Initialize the test matrix

for (int rowIdx= 1; rowIdx <= matrixOrder; rowIdx++)

for (int colIdx= 1; colIdx <= matrixOrder; colIdx++)

if (rowIdx == colIdx)

matrix[rowIdx, colIdx]= 2.0;

else if ((colIdx == rowIdx+1) || (colIdx == rowIdx-1))

matrix[rowIdx, colIdx]= -1.0;

// Create a new factor object

Factor factor= new Factor();

// Print the test matrix

Console.WriteLine("Test Matrix:\n{0}\n", matrix);

// Compute and print the cholesky factorization using the single output syntax

argOut= factor.cholesky((MWArray)matrix);

Console.WriteLine("Cholesky Factorization:\n{0}\n", argOut);

4-27

4 Sample Applications (C#)

// Compute and print the LU factorization using the multiple output syntax

argsOut= factor.ludecomp(2, matrix);

Console.WriteLine("LU Factorization:\nL Matrix:\n{0}\nU Matrix:\n{1}\n", argsOut[0], argsOut[1]);

MWNumericArray.DisposeArray(argsOut);

// Compute and print the QR factorization

argsOut= factor.qrdecomp(2, matrix);

Console.WriteLine("QR Factorization:\nQ Matrix:\n{0}\nR Matrix:\n{1}\n", argsOut[0], argsOut[1]);

Console.ReadLine();

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

finally

{

// Free native resources

if (null != (object)matrix) matrix.Dispose();

if (null != (object)argOut) argOut.Dispose();

MWNumericArray.DisposeArray(argsOut);

}

}

#endregion

}

}

The statement

Factor factor= new Factor();

creates an instance of the class Factor.

4-28

Matrix Math Example

The following statements call the methods that encapsulate the MATLAB
functions:

argOut= factor.cholesky((MWArray)matrix);
...
argsOut= factor.ludecomp(2, matrix);
...
argsOut= factor.qrdecomp(2, matrix);
...

Note See “Understanding the MatrixMathDemo Program” on page 4-29
for more details about the structure of this program.

14 Build the MatrixMathDemoApp application using Visual Studio .NET.

a. The MatrixMathDemoCSharpApp directory contains a Visual Studio
.NET project file for this example. Open the project in Visual Studio
.NET by double-clicking MatrixMathDemoCSharpApp.csproj in
Windows® Explorer. You can also open it from the MATLAB desktop
by right-clicking MatrixMathDemoCSharpApp.csproj > Open
Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to the
MatrixMathDemoComp component which you built in a previous
step. (The component, MatrixMathDemo.dll, is in the
\MatrixMathExample\MatrixMathDemoComp\distrib subdirectory
of your work area.)

15 Build and run the application in Visual Studio .NET.

Understanding the MatrixMathDemo Program
The MatrixMathDemo program takes one or two arguments from the command
line. The first argument is converted to the integer order of the test matrix.
If the string sparse is passed as the second argument, a sparse matrix is

4-29

4 Sample Applications (C#)

created to contain the test array. The Cholesky, LU, and QR factorizations
are then computed and the results are displayed.

The main method has three parts:

• The first part sets up the input matrix, creates a new factor object, and calls
the cholesky, ludecomp, and qrdecomp methods. This part is executed
inside of a try block. This is done so that if an exception occurs during
execution, the corresponding catch block will be executed.

• The second part is the catch block. The code prints a message to standard
output to let the user know about the error that has occurred.

• The third part is a finally block to manually clean up native resources
before exiting.

4-30

Phonebook Example

Phonebook Example

In this section...

“ The makephone Function” on page 4-31

“Phonebook Example: Step-by-Step Procedure” on page 4-31

The makephone Function
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the MWArray link on the product roadmap, in the “Documentation Set”
section.

Phonebook Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB® to your work
directory:

matlabroot\dotnetbuilder\Examples\VSx\PhoneBookExample

where x is the version of Visual Studio you are using.

b. At the MATLAB command prompt, cd to the new PhoneBookExample
subdirectory in your work directory.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

4-31

4 Sample Applications (C#)

% Builder for Java.

% Copyright 2006-2007 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work directory in
PhoneBookExample\PhoneBookDemoComp\makephone.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder NE and
.NET Component.

6 Select phonebookdemo as the name of the project and click OK.

7 In the Deployment Tool, select phonebookdemo.class and right-click.
Select Rename and type phonebook.

8 Select Generate Verbose Output.

9 Add the makephone.m file to the project

10 Save the project.

11 Build the component.

12 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VSx\
PhoneBookExample\PhoneBookDemoCSharpApp\getphone.cs.

4-32

Phonebook Example

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

4-33

4 Sample Applications (C#)

The program listing is shown here.

getphone.cs

/* getphone.cs

% This file is used as an example for MATLAB

% Builder for .NET.

*

* Copyright 2001-2007 The MathWorks, Inc.

*/

/* Necessary package imports */

using System;

using System.Collections.Generic;

using System.Text;

using MathWorks.MATLAB.NET.Arrays;

using phonebookdemo;

namespace PhoneBookExampleCSharpApp

{

/*

* getphone class demonstrates the use of the MWStructArray class

*/

class getphone

{

static void Main(string[] args)

{

phonebook thePhonebook = null; /* Stores deployment class instance */

MWStructArray friends = null; /* Sample input data */

Object[] result = null; /* Stores the result */

MWStructArray book = null; /* Ouptut data extracted from result */

/* Create the new deployment object */

thePhonebook = new phonebook();

/* Create an MWStructArray with two fields */

String[] myFieldNames = { "name", "phone" };

friends = new MWStructArray(2, 2, myFieldNames);

4-34

Phonebook Example

/* Populate struct with some sample data --- friends and phone numbers */

friends["name", 1] = new MWCharArray("Jordan Robert");

friends["phone", 1] = 3386;

friends["name", 2] = new MWCharArray("Mary Smith");

friends["phone", 2] = 3912;

friends["name", 3] = new MWCharArray("Stacy Flora");

friends["phone", 3] = 3238;

friends["name", 4] = new MWCharArray("Harry Alpert");

friends["phone", 4] = 3077;

/* Show some of the sample data */

Console.WriteLine("Friends: ");

Console.WriteLine(friends.ToString());

/* Pass it to an M-function that determines external phone number */

result = thePhonebook.makephone(1, friends);

book = (MWStructArray)result[0];

Console.WriteLine("Result: ");

Console.WriteLine(book.ToString());

/* Extract some data from the returned structure */

Console.WriteLine("Result record 2:");

Console.WriteLine(book["name", 2]);

Console.WriteLine(book["phone", 2]);

Console.WriteLine(book["external", 2]);

/* Print the entire result structure using the helper function below */

Console.WriteLine("");

Console.WriteLine("Entire structure:");

dispStruct(book);

}

public static void dispStruct(MWStructArray arr)

{

Console.WriteLine("Number of Elements: " + arr.NumberOfElements);

//int numDims = arr.NumberofDimensions;

int[] dims = arr.Dimensions;

Console.Write("Dimensions: " + dims[0]);

for (int i = 1; i < dims.Length; i++)

4-35

4 Sample Applications (C#)

{

Console.WriteLine("-by-" + dims[i]);

}

Console.WriteLine("");

Console.WriteLine("Number of Fields: " + arr.NumberOfFields);

Console.WriteLine("Standard MATLAB view:");

Console.WriteLine(arr.ToString());

Console.WriteLine("Walking structure:");

string[] fieldNames = arr.FieldNames;

for (int element = 1; element <= arr.NumberOfElements; element++)

{

Console.WriteLine("Element " + element);

for (int field = 0; field < arr.NumberOfFields; field++)

{

MWArray fieldVal = arr[arr.FieldNames[field], element];

/* Recursively print substructures, give string display of other classes */

if (fieldVal.GetType() == typeof(MWStructArray))

{

Console.WriteLine(" " + fieldNames[field] + ": nested structure:");

Console.WriteLine("+++ Begin of \"" + fieldNames[field] + "\" nested structure");

dispStruct((MWStructArray)fieldVal);

Console.WriteLine("+++ End of \"" + fieldNames[field] + "\" nested structure");

}

else

{

Console.Write(" " + fieldNames[field] + ": ");

Console.WriteLine(fieldVal.ToString());

}

}

}

}

}

}

The program does the following:

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

4-36

Phonebook Example

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

13 Build thePhoneBookDemoCSharpApp application using Visual Studio® .NET.

a. The PhoneBookDemoCSharpApp directory contains a Visual Studio
.NET project file for this example. Open the project in Visual Studio
.NET by double-clicking PhoneBookDemoCSharpApp.csproj in
Windows® Explorer. You can also open it from the MATLAB desktop
by right-clicking PhoneBookDemoCSharpApp.csproj > Open
Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to the
PhoneBookDemoCSharpComp component which you built in a
previous step. (The component, PhoneBookDemo.dll, is in
the \PhoneBookExample\PhoneBookDemoCSharpApp\distrib
subdirectory of your work area.)

14 Build and run the application in Visual Studio .NET.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912

4-37

4 Sample Applications (C#)

(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name
phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

4-38

5

Sample Applications
(Microsoft® Visual Basic®

.NET)

The sample applications that follow use the same components as those
developed in “Magic Square Example” on page 1-9 and Chapter 4, “Sample
Applications (C#)”. Instead of C#, the following applications are written in
Microsoft® Visual Basic® .NET. For details about creating the components, see
the procedures noted in the beginning of the description for each application.
Then follow the steps shown here to use the component in a Visual Basic®

application.

Magic Square Example (Visual
Basic®) (p. 5-3)

Step-by-step example showing code
for a simple Visual Basic .NET
application

Create Plot Example (Visual Basic®)
(p. 5-7)

Step-by-step example showing code
that uses two input arguments

Variable Arguments Example
(Visual Basic®) (p. 5-11)

Step-by-step example showing code
for a simple Visual Basic .NET
application that passes a variable
number of arguments

Spectral Analysis Example (Visual
Basic®) (p. 5-15)

Step-by-step example showing code
for a simple Visual Basic .NET
application that performs an FFT on
an input data array

5 Sample Applications (Microsoft® Visual Basic® .NET)

Matrix Math Example (Visual
Basic®) (p. 5-20)

Step-by-step example showing code
for a simple Visual Basic .NET
application that performs Cholesky,
LU, and QR factorizations on a
simple tridiagonal matrix

Phonebook Example (Visual Basic)
(p. 5-25)

How to encapsulate a MATLAB®

function that draws a plot given two
input arguments

Note The examples for the MATLAB® Builder™ NE product are in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber, where
matlabroot is the directory where the MATLAB product is installed and
VSversionnumber specifies the version of Microsoft® Visual Studio® .NET you
are using (VS7 or VS8, (also known as Microsoft Visual Studio .NET 2003 and
Microsoft Visual Studio 2005, respectively). If you have Microsoft Visual
Studio .NET installed, you can load projects for all the examples by opening
the following solution:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\DotNetExamples.sln

5-2

Magic Square Example (Visual Basic®)

Magic Square Example (Visual Basic®)
To create the component for this example, see the first several steps in “Magic
Square Example” on page 1-9. After you build the MagicDemoComp component,
you can build an application that accesses the component as follows.

1 For this example, the application is MagicDemoApp.vb.

You can find MagicDemoApp.vb in:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber

\MagicSquareExample\MagicDemoVBApp\MagicSquareExample\MagicDemoVBApp

The program listing is as follows.

MagicDemoApp.vb

' ***

'

' MagicDemoApp.vb

'

' This file is an example application for the MATLAB Builder NE product.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports System.Reflection

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MagicDemoComp

Namespace MathWorks.Demo.MagicSquareApp

' <summary>

' The MagicDemoApp class computes a magic square of the user specified size.

' </summary>

' <remarks>

5-3

5 Sample Applications (Microsoft® Visual Basic® .NET)

' args[0] - a positive integer representing the array size.

' </remarks>

Class MagicDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim arraySize As MWNumericArray = Nothing

Dim magicSquare As MWNumericArray = Nothing

Try

' Get user specified command line arguments or set default

If (0 <> args.Length) Then

arraySize = New MWNumericArray(System.Int32.Parse(args(0)), False)

Else

arraySize = New MWNumericArray(4, False)

End If

' Create the magic square object

Dim magic As MagicSquare = New MagicSquare

' Compute the magic square and print the result

magicSquare = magic.makesquare(arraySize)

Console.WriteLine("Magic square of order {0}{1}{2}{3}", arraySize, Chr(10), Chr(10), magicSquare)

' Convert the magic square array to a two dimensional native double array

Dim nativeArray(,) As Double = CType(magicSquare.ToArray(MWArrayComponent.Real), Double(,))

Console.WriteLine("{0}Magic square as native array:{1}", Chr(10), Chr(10))

' Display the array elements:

Dim index As Integer = arraySize.ToScalarInteger()

For i As Integer = 0 To index - 1

For j As Integer = 0 To index - 1

5-4

Magic Square Example (Visual Basic®)

Console.WriteLine("Element({0},{1})= {2}", i, j, nativeArray(i, j))

Next j

Next i

Console.ReadLine() 'Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The application you build from this source file does the following:

• Lets you pass a dimension for the magic square from the command line.

• Converts the dimension argument to a MATLAB® integer scalar value.

• Declares variables of type MWNumericArray to handle data required by
the encapsulated makesquare function.

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Creates an instance of the MagicSquare class named magic.

• Calls the makesquare method, which belongs to the magic object. The
makesquare method generates the magic square using the MATLAB
magic function.

• Displays the array elements on the command line.

5-5

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

5 Sample Applications (Microsoft® Visual Basic® .NET)

2 Build the application using Visual Studio® .NET.

a. The MagicDemoVBApp directory contains a Visual Studio .NET project
file for each example. Open the project in Visual Studio .NET for this
example by double-clicking MagicDemoVBApp.vbproj in Windows®

Explorer.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add a reference to the MagicDemoComp component, which
is in the distrib subdirectory.

d. Build and run the application in Visual Studio.NET.

The first time you run the application, Visual Studio
.NET creates a directory named MagicDemo_MCR in
MagicSsquareExample\bin\debug. The MagicDemo_MCR
directory contains encrypted versions of M-files that the MagicSquare
component class encapsulates.

5-6

Create Plot Example (Visual Basic®)

Create Plot Example (Visual Basic®)
To create the component for this example, see “Creating a Simple Plot” on
page 4-3. Then create a Visual Basic® application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\PlotExample
\PlotDemoVBApp\PlotDemoApp.vb.

The program listing is shown here.

PlotDemoApp.vb

' ***

'

' PlotDemoApp.vb

'

' This file is an example application for the MATLAB Builder NE product.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports PlotDemoComp

<Assembly: NativeGC(True, GCBlockSize:=25)> ' Set native memory management block size to 25 MB.

Namespace MathWorks.Demo.PlotDemoApp

' <summary>

' This application demonstrates plotting x-y data by graphing a simple

' parabola into a MATLAB figure window.

' </summary>

Class PlotDemoApp

5-7

5 Sample Applications (Microsoft® Visual Basic® .NET)

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const numPoints As Integer = 10 ' Number of points to plot

Dim idx As Integer

Dim plotValues(,) As Double = New Double(1, numPoints - 1) {}

Dim coords As MWNumericArray

'Plot 5x vs x^2

For idx = 0 To numPoints - 1

Dim x As Double = idx + 1

plotValues(0, idx) = x * 5

plotValues(1, idx) = x * x

Next idx

coords = New MWNumericArray(plotValues)

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the values

plotter.drawgraph(coords)

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

5-8

Create Plot Example (Visual Basic®)

The program does the following:

• Creates two arrays of double values

• Creates a Plotter object

• Calls the drawgraph method to plot the equation using the MATLAB®

plot function

• Uses MWNumericArray to handle the data needed by the drawgraph
method to plot the equation

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch block to catch and handle any exceptions

The statement

Dim plotter As Plotter = New Plotter

creates an instance of the Plotter class, and the statement

plotter.drawgraph(coords)

calls the method drawgraph.

2 Build the PlotDemoApp application using Visual Studio® .NET.

a. The PlotDemoVBApp directory contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking PlotDemoVBApp.vbproj in Windows® Explorer.
You can also open it from the MATLAB desktop by right-clicking
PlotDemoVBApp.vbproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to the PlotDemoComp
component which you built in a previous step. (The component,

5-9

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

5 Sample Applications (Microsoft® Visual Basic® .NET)

PlotDemo.dll, is in the \PlotExample\PlotDemoComp\distrib
subdirectory of your work area.)

3 Build and run the application in Visual Studio .NET.

5-10

Variable Arguments Example (Visual Basic®)

Variable Arguments Example (Visual Basic®)
To create the component for this example, see “Passing Variable Arguments”
on page 4-8. Then create a Microsoft® Visual Basic® application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\VarArgExample
\VarArgDemoVBApp\VarArgDemoApp.vb.

The program listing is shown here.

VarArgDemoApp.vb

' ***

'

' VarArgDemoApp.vb

'

' This file is an example application for the MATLAB Builder NE product.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports VarArgDemoComp

Namespace MathWorks.Demo.VarArgDemoApp

' <summary>

' This application demonstrates how to call components having methods with varargin/vargout arguments.

' </summary>

Class VarArgDemoApp

#Region " MAIN "

5-11

5 Sample Applications (Microsoft® Visual Basic® .NET)

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

' Initialize the input data

Dim colorSpec As MWNumericArray = New MWNumericArray(New Double() {0.9, 0.0, 0.0})

Dim data As MWNumericArray = New MWNumericArray(New Integer(,) {{1, 2}, {2, 4}, {3, 6}, {4, 8}, {5, 10}})

Dim coords() As MWArray = Nothing

Try

' Create a new plotter object

Dim plotter As Plotter = New Plotter

'Extract a variable number of two element x and y coordinate vectors from the data array

coords = plotter.extractcoords(5, data)

' Draw a graph using the specified color to connect the variable number of input coordinates.

' Return a two column data array containing the input coordinates.

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2), coords(3), coords(4)),_

MWNumericArray)

Console.WriteLine("result={0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

' Note: You can also pass in the coordinate array directly.

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

Console.WriteLine("result=\{0}{1}", Chr(10), data)

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

5-12

Variable Arguments Example (Visual Basic®)

#End Region

End Class

End Namespace

The program does the following:

• Initializes three arrays (colorSpec, data, and coords) using the
MWArray class library

• Creates a Plotter object

• Calls the extracoords and drawgraph methods

• Uses MWNumericArray to handle the data needed by the methods

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Uses a try-catch-finally block to catch and handle any exceptions

The following statements are alternative ways to call the drawgraph
method:

data = CType(plotter.drawgraph(colorSpec, coords(0), coords(1), coords(2), coords(3), coords(4)), MWNumericArray)

...

data = CType(plotter.drawgraph(colorSpec, coords), MWNumericArray)

2 Build the VarArgDemoApp application using Visual Studio® .NET.

a. The VarArgDemoVBApp directory contains a Visual Studio .NET project
file for this example. Open the project in Visual Studio .NET by
double-clicking VarArgDemoVBApp.vbproj in Windows® Explorer.
You can also open it from the MATLAB® desktop by right-clicking
VarArgDemoVBApp.vbproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

5-13

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

5 Sample Applications (Microsoft® Visual Basic® .NET)

c. If necessary, add (or update the location of) a reference
to the VarArgDemoComp component which you built in a
previous step. (The component, VarArgDemo.dll, is in the
\VarArgExample\VarArgDemoComp\distrib subdirectory of your
work area.)

3 Build and run the application in Visual Studio .NET.

5-14

Spectral Analysis Example (Visual Basic®)

Spectral Analysis Example (Visual Basic®)
To create the component for this example, see the first few steps of the
“Creating a Spectral Analysis” on page 4-14. Then create a Microsoft® Visual
Basic® application as follows:

1 Review the sample application for this example in
matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\SpectraExample
\SpectraDemoVBApp\SpectraDemoApp.vb.

The program listing is shown here.

SpectraDemoApp.vb

' ***

'

' SpectraDemoApp.vb

'

' This file is an example application for the MATLAB Builder NE product.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports SpectraDemoComp

Namespace MathWorks.Demo.SpectraDemoApp

' <summary>

' This application computes and plots the power spectral density of an input signal.

' </summary>

Class SpectraDemoApp

#Region " MAIN "

5-15

5 Sample Applications (Microsoft® Visual Basic® .NET)

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Try

Const interval As Double = 0.01 ' The sampling interval

Const numSamples As Integer = 1001 ' The number of samples

' Construct input data as sin(2*PI*15*t) + (sin(2*PI*40*t) plus a

' random signal. Duration= 10; Sampling interval= 0.01

Dim data As MWNumericArray = New MWNumericArray(MWArrayComplexity.Real, MWNumericType.Double, numSamples)

Dim random As Random = New Random

' Initialize data

Dim t As Double

Dim idx As Integer

For idx = 1 To numSamples

t = (idx - 1) * interval

data(idx) = New MWNumericArray(Math.Sin(2.0 * Math.PI * 15.0 * t) + _

Math.Sin(2.0 * Math.PI * 40.0 * t) + random.NextDouble())

Next idx

' Create a new signal analyzer object

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

' Compute the fft and power spectral density for the data array

Dim argsOut() As MWArray = signalAnalyzer.computefft(3, data, MWArray.op_Implicit(interval))

' Print the first twenty elements of each result array

Dim numElements As Integer = 20

Dim resultArray As MWNumericArray = New MWNumericArray(MWArrayComplexity.Complex, MWNumericType.Double, numElements)

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(0), MWNumericArray))(idx)

Next idx

Console.WriteLine("FFT:{0}{1}{2}", Chr(10), resultArray, Chr(10))

5-16

Spectral Analysis Example (Visual Basic®)

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(1), MWNumericArray))(idx)

Next idx

Console.WriteLine("Frequency:{0}{1}{2}", Chr(10), resultArray, Chr(10))

For idx = 1 To numElements

resultArray(idx) = (CType(argsOut(2), MWNumericArray))(idx)

Next idx

Console.WriteLine("Power Spectral Density:{0}{1}{2}", Chr(10), resultArray, Chr(10))

' Create a new plotter object

Dim plotter As Plotter = New Plotter

' Plot the fft and power spectral density for the data array

plotter.plotfft(argsOut(0), argsOut(1), argsOut(2))

Console.ReadLine() ' Wait for user to exit application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

End Try

End Sub

#End Region

End Class

End Namespace

The program does the following:

• Constructs an input array with values representing a random signal
with two sinusoids at 15 and 40 Hz embedded inside of it

• Uses MWNumericArray to handle data conversion

5-17

5 Sample Applications (Microsoft® Visual Basic® .NET)

Note For complete reference information about the MWArray class
hierarchy, see the MWArray Class Library Reference (available online
only).

• Instantiates a SignalAnalyzer object

• Calls the computefft method, which computes the FFT, frequency, and
the spectral density

• Instantiates a Plotter object

• Calls the plotfft method, which plots the data

• Uses a try/catch block to handle exceptions

The following statements

Dim data As MWNumericArray = New MWNumericArray_
(MWArrayComplexity.Real, MWNumericType.Double, numSamples)

...
Dim resultArray As MWNumericArray = New MWNumericArray_

(MWArrayComplexity.Complex, MWNumericType.Double, numElements)

show how to use the MWArray class library to construct the necessary
data types.

The following statement

Dim signalAnalyzer As SignalAnalyzer = New SignalAnalyzer

creates an instance of the class SignalAnalyzer, and the following
statement

Dim argsOut() As MWArray = signalAnalyzer.computefft
(3, data, MWArray.op_Implicit(interval))

calls the method computefft and request three outputs.

2 Build the SpectraDemoApp application using Visual Studio® .NET.

a. The SpectraDemoVBApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET

5-18

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

Spectral Analysis Example (Visual Basic®)

by double-clicking SpectraDemoVBApp.vbproj in Windows® Explorer.
You can also open it from the MATLAB® desktop by right-clicking
SpectraDemoVBApp.vbproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or update the location of) a reference
to the SpectraDemo component which you built in a
previous step. (The component, SpectraDemo.dll, is in the
\SpectraExample\SpectraDemoComp\distrib subdirectory of your
work area.)

3 Build and run the application in Visual Studio .NET.

5-19

5 Sample Applications (Microsoft® Visual Basic® .NET)

Matrix Math Example (Visual Basic®)
To create the component for this example, see the first few steps in “Matrix
Math Example” on page 4-22. Then create a Microsoft® Visual Basic®

application as follows.

1 Review the sample application for this example in:

matlabroot\toolbox\dotnetbuilder\Examples\VSversionnumber\MatrixMathExample

\MatrixMathDemoVBApp\MatrixMathDemoApp.vb.

The program listing is shown here.

MatrixMathDemoApp.vb

' ***

'

' MatrixMathDemoApp.vb

'

' This file is an example application for the MATLAB Builder NE product.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports MathWorks.MATLAB.NET.Utility

Imports MathWorks.MATLAB.NET.Arrays

Imports MatrixMathDemoComp

<Assembly: NativeGC(False)> ' Disable Automatic native memory management

Namespace MathWorks.Demo.MatrixMathApp

' <summary>

' This application computes cholesky, LU, and QR factorizations of a finite difference matrix of order N.

' The order is passed into the application on the command line.

5-20

Matrix Math Example (Visual Basic®)

' </summary>

' <remarks>

' Command Line Arguments:

' <newpara></newpara>

' args[0] - Matrix order(N)

' <newpara></newpara>

' args[1] - (optional) sparse; Use a sparse matrix

' </remarks>

Class MatrixMathDemoApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

Dim makeSparse As Boolean = True

Dim matrixOrder As Integer = 4

Dim matrix As MWNumericArray = Nothing ' The matrix to factor

Dim argOut As MWArray = Nothing ' Stores single factorization result

Dim argsOut() As MWArray = Nothing ' Stores multiple factorization results

Try

' If no argument specified, use defaults

If (0 <> args.Length) Then

'Convert matrix order

matrixOrder = System.Int32.Parse(args(0))

If (0 > matrixOrder) Then

Throw New ArgumentOutOfRangeException("matrixOrder", matrixOrder, _

"Must enter a positive integer for the matrix order(N)")

End If

makeSparse = ((1 < args.Length) AndAlso (args(1).Equals("sparse")))

End If

' Create the test matrix. If the second argument is "sparse", create a sparse matrix.

5-21

5 Sample Applications (Microsoft® Visual Basic® .NET)

matrix = IIf(makeSparse, _

MWNumericArray.MakeSparse_

(matrixOrder, matrixOrder, MWArrayComplexity.Real, (matrixOrder + (2 * (matrixOrder - 1)))), _

New MWNumericArray_

(MWArrayComplexity.Real, MWNumericType.Double, matrixOrder, matrixOrder))

' Initialize the test matrix

For rowIdx As Integer = 1 To matrixOrder

For colIdx As Integer = 1 To matrixOrder

If rowIdx = colIdx Then

matrix(rowIdx, colIdx) = New MWNumericArray(2.0)

ElseIf colIdx = rowIdx + 1 Or colIdx = rowIdx - 1 Then

matrix(rowIdx, colIdx) = New MWNumericArray(-1.0)

End If

Next colIdx

Next rowIdx

' Create a new factor object

Dim factor As Factor = New Factor

' Print the test matrix

Console.WriteLine("Test Matrix:{0}{1}{2}", Chr(10), matrix, Chr(10))

' Compute and print the cholesky factorization using the single output syntax

argOut = factor.cholesky(matrix)

Console.WriteLine("Cholesky Factorization:{0}{1}{2}", Chr(10), argOut, Chr(10))

' Compute and print the LU factorization using the multiple output syntax

argsOut = factor.ludecomp(2, matrix)

Console.WriteLine("LU Factorization:{0}L Matrix:{1}{2}{3}U Matrix:{4}{5}{6}",_

Chr(10), Chr(10), argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

MWNumericArray.DisposeArray(argsOut)

' Compute and print the QR factorization

argsOut = factor.qrdecomp(2, matrix)

Console.WriteLine("QR Factorization:{0}Q Matrix:{1}{2}{3}R Matrix:{4}{5}{6}", _

5-22

Matrix Math Example (Visual Basic®)

Chr(10), Chr(10), argsOut(0), Chr(10), Chr(10), argsOut(1), Chr(10))

Console.ReadLine()

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

Finally

' Free native resources

If Not (matrix Is Nothing) Then

matrix.Dispose()

End If

If Not (argOut Is Nothing) Then

argOut.Dispose()

End If

MWNumericArray.DisposeArray(argsOut)

End Try

End Sub

#End Region

End Class

End Namespace

The statement

Dim factor As Factor = New Factor

creates an instance of the class Factor.

The following statements call the methods that encapsulate the MATLAB®

functions:

argOut = factor.cholesky(matrix)

argsOut = factor.ludecomp(2, matrix)

...

5-23

5 Sample Applications (Microsoft® Visual Basic® .NET)

argsOut = factor.qrdecomp(2, matrix)

Note See “Understanding the MatrixMathDemo Program” on page 4-29
for more details about the structure of this program.

2 Build the MatrixMathDemoApp application using Visual Studio® .NET.

a. The MatrixMathDemoVBApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET by
double-clicking MatrixMathDemoVBApp.vbproj in Windows® Explorer.
You can also open it from the MATLAB desktop by right-clicking
MatrixMathDemoVBApp.vbproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or update the location of) a reference to
the MatrixMathDemoComp component which you built in a
previous step. (The component, MatrixMathDemo.dll, is in the
\MatrixMathExample\MatrixMathDemoComp\distrib subdirectory
of your work area.)

3 Build and run the application in Visual Studio .NET.

5-24

Phonebook Example (Visual Basic)

Phonebook Example (Visual Basic)

In this section...

“ The makephone Function” on page 5-25

“Phonebook Example: Step-by-Step Procedure” on page 5-25

The makephone Function
The makephone function takes a structure array as an input, modifies it, and
supplies the modified array as an output.

Note For complete reference information about the MWArray class hierarchy,
see the MWArray link on the product roadmap, in the “Documentation Set”
section.

Phonebook Example: Step-by-Step Procedure

1 If you have not already done so, copy the files for this example as follows:

a. Copy the following directory that ships with MATLAB® to your work
directory:

matlabroot\dotnetbuilder\Examples\VSx\PhoneBookExample

where x is the version of Visual Studio you are using.

b. At the MATLAB command prompt, cd to the new PhoneBookExample
subdirectory in your work directory.

2 Write the makephone function as you would any MATLAB function.

The following code defines the makephone function:

function book = makephone(friends)

%MAKEPHONE Add a structure to a phonebook structure

% BOOK = MAKEPHONE(FRIENDS) adds a field to its input structure.

% The new field EXTERNAL is based on the PHONE field of the original.

% This file is used as an example for MATLAB

5-25

5 Sample Applications (Microsoft® Visual Basic® .NET)

% Builder for Java.

% Copyright 2006-2007 The MathWorks, Inc.

book = friends;

for i = 1:numel(friends)

numberStr = num2str(book(i).phone);

book(i).external = ['(508) 555-' numberStr];

end

This code is already in your work directory in
PhoneBookExample\PhoneBookDemoComp\makephone.m.

3 While in MATLAB, issue the following command to open the Deployment
Tool dialog box:

deploytool

4 In MATLAB, Click File > New Deployment Project.

5 In the New Deployment Project dialog, select MATLAB Builder NE and
.NET Component.

6 Select phonebookdemo as the name of the project and click OK.

7 In the Deployment Tool, select phonebookdemo.class and right-click.
Select Rename and type phonebook.

8 Select Generate Verbose Output.

9 Add the makephone.m file to the project

10 Save the project.

11 Build the component.

12 Write source code for an application that accesses the component.

The sample application for this example is in
matlabroot\toolbox\dotnetbuilder\Examples\VSx\
PhoneBookExample\PhoneBookDemoVBApp\getphone.vb.

5-26

Phonebook Example (Visual Basic)

The program defines a structure array containing names and phone
numbers, modifies it using a MATLAB function, and displays the resulting
structure array.

5-27

5 Sample Applications (Microsoft® Visual Basic® .NET)

The program listing is shown here.

getphone.vb

' getphone.vb

' This file is used as an example for MATLAB

' Builder for .NET.

'

' Copyright 2001-2007 The MathWorks, Inc.

' Necessary package imports

Imports MathWorks.MATLAB.NET.Arrays

Imports phonebookdemo

'

' getphone class demonstrates the use of the MWStructArray class

'

Public Module getphone

Public Sub Main()

Dim thePhonebook As phonebook 'Stores deployment class instance

Dim friends As MWStructArray 'Sample input data

Dim result As Object() 'Stores the result

Dim book As MWStructArray 'Ouptut data extracted from result

' Create the new deployment object

thePhonebook = New phonebook()

' Create an MWStructArray with two fields

Dim myFieldNames As String() = {"name", "phone"}

friends = New MWStructArray(2, 2, myFieldNames)

' Populate struct with some sample data --- friends and phone numbers

friends("name", 1) = New MWCharArray("Jordan Robert")

friends("phone", 1) = 3386

friends("name", 2) = New MWCharArray("Mary Smith")

friends("phone", 2) = 3912

friends("name", 3) = New MWCharArray("Stacy Flora")

friends("phone", 3) = 3238

5-28

Phonebook Example (Visual Basic)

friends("name", 4) = New MWCharArray("Harry Alpert")

friends("phone", 4) = 3077

' Show some of the sample data

Console.WriteLine("Friends: ")

Console.WriteLine(friends.ToString())

' Pass it to an M-function that determines external phone number

result = thePhonebook.makephone(1, friends)

book = CType(result(0), MWStructArray)

Console.WriteLine("Result: ")

Console.WriteLine(book.ToString())

' Extract some data from the returned structure '

Console.WriteLine("Result record 2:")

Console.WriteLine(book("name", 2))

Console.WriteLine(book("phone", 2))

Console.WriteLine(book("external", 2))

' Print the entire result structure using the helper function below

Console.WriteLine("")

Console.WriteLine("Entire structure:")

dispStruct(book)

End Sub

Sub dispStruct(ByVal arr As MWStructArray)

Console.WriteLine("Number of Elements: " + arr.NumberOfElements.ToString())

'int numDims = arr.NumberofDimensions

Dim dims As Integer() = arr.Dimensions

Console.Write("Dimensions: " + dims(0).ToString())

Dim i As Integer

For i = 1 To dims.Length

Console.WriteLine("-by-" + dims(i - 1).ToString())

Next i

Console.WriteLine("")

Console.WriteLine("Number of Fields: " + arr.NumberOfFields.ToString())

Console.WriteLine("Standard MATLAB view:")

5-29

5 Sample Applications (Microsoft® Visual Basic® .NET)

Console.WriteLine(arr.ToString())

Console.WriteLine("Walking structure:")

Dim fieldNames As String() = arr.FieldNames

Dim element As Integer

For element = 1 To arr.NumberOfElements

Console.WriteLine("Element " + element.ToString())

Dim field As Integer

For field = 0 To arr.NumberOfFields - 1

Dim fieldVal As MWArray = arr(arr.FieldNames(field), element)

' Recursively print substructures, give string display of other classes

If (TypeOf fieldVal Is MWStructArray) Then

Console.WriteLine(" " + fieldNames(field) + ": nested structure:")

Console.WriteLine("+++ Begin of \"" + fieldNames[field] + " \ " nested structure")

dispStruct(CType(fieldVal, MWStructArray))

Console.WriteLine("+++ End of \"" + fieldNames[field] + " \ " nested structure")

Else

Console.Write(" " + fieldNames(field) + ": ")

Console.WriteLine(fieldVal.ToString())

End If

Next field

Next element

End Sub

End Module

The program does the following:

• Creates a structure array, using MWStructArray to represent the
example phonebook data.

• Instantiates the plotter class as thePhonebook object, as shown:
thePhonebook = new phonebook();

• Calls the makephone method to create a modified copy of the structure by
adding an additional field, as shown:
result = thePhonebook.makephone(1, friends);

13 Build thePhoneBookDemoVBApp application using Visual Studio® .NET.

5-30

Phonebook Example (Visual Basic)

a. The PhoneBookDemoVBApp directory contains a Visual Studio .NET
project file for this example. Open the project in Visual Studio .NET by
double-clicking PhoneBookDemoVBApp.csproj in Windows® Explorer.
You can also open it from the MATLAB desktop by right-clicking
PhoneBookDemoVBApp.csproj > Open Outside MATLAB.

b. If necessary, add a reference to the MWArray component, which is
matlabroot\dotnetbuilder\bin\architecture\framework_version
\mwarray.dll.

c. If necessary, add (or fix the location of) a reference to the
PhoneBookDemoVBComp component which you built in a
previous step. (The component, PhoneBookDemo.dll, is in the
\PhoneBookExample\PhoneBookDemoVBApp\distrib subdirectory
of your work area.)

14 Build and run the application in Visual Studio .NET.

The getphone program should display the output:

Friends:
2x2 struct array with fields:

name
phone

Result:
2x2 struct array with fields:

name
phone
external

Result record 2:
Mary Smith
3912
(508) 555-3912

Entire structure:
Number of Elements: 4
Dimensions: 2-by-2
Number of Fields: 3
Standard MATLAB view:
2x2 struct array with fields:

name

5-31

5 Sample Applications (Microsoft® Visual Basic® .NET)

phone
external

Walking structure:
Element 1

name: Jordan Robert
phone: 3386
external: (508) 555-3386

Element 2
name: Mary Smith
phone: 3912
external: (508) 555-3912

Element 3
name: Stacy Flora
phone: 3238
external: (508) 555-3238

Element 4
name: Harry Alpert
phone: 3077
external: (508) 555-3077

5-32

6

Troubleshooting

This chapter provides some solutions to common problems encountered using
the MATLAB® Builder™ NE product.

Troubleshooting the Build Process
(p. 6-2)

Solutions for common problems that
occur during the build process

Failure to Find a Required File
(p. 6-3)

Solutions to problems when files
cannot be found

Diagnostic Messages (p. 6-4) Diagnostic messages with
suggestions about their cause

6 Troubleshooting

Troubleshooting the Build Process

In this section...

“View the Latest Build Log” on page 6-2

“Generate Verbose Output” on page 6-2

View the Latest Build Log
To view the log of your most recent build process, open the build
log, which is generated in the intermediate directory for your
project. By default the intermediate directory for a project is
project_directory/projectname_without_ext/src.

Generate Verbose Output
Telling the Deployment Tool to generate verbose output provides a more
detailed log of each build. These details can assist you in determining the
cause of problems you encounter.

To enable verbose output during builds, select Show verbose output in
the Deployment Tool window.

6-2

Failure to Find a Required File

Failure to Find a Required File
If your application generates a diagnostic message indicating that a module
cannot be found, it could be that the MCR is not located properly on your path,
or that the CTF file is not in the proper directory. How to fix this problem
depends on whether it occurs on a development machine (where you are using
the builder to create a component) or target machine (where you are trying to
use the component in your application). The required locations are as follows
for MCR and CTF according to development versus target machines.

Required Locations to Develop and Use Components

Kind
of File

Required Location on
Development Machine

Required Location on Target
Machine

MCR Make sure that
matlabroot\bin\architecture
appears on your system path
ahead of any other MATLAB®

installations.
(matlabroot is your root
MATLAB directory.)

Verify that
mcr_root\ver\runtime
\architecture appears on your
system path.
(mcr_root is your root MCR
directory) and ver represents
the MCR version number.

CTF Verify that the CTF file is in the same directory as your program’s
executable file.

6-3

6 Troubleshooting

Diagnostic Messages
The following table shows diagnostic messages you might encounter, probable
causes for the message, and suggested solutions.

Note The MATLAB® Builder™ NE product uses the MATLAB® Compiler™
product to generate components. This means that you might see diagnostic
messages from MATLAB Compiler. See “Compile-Time Errors” in the
MATLAB Compiler documentation for more information about those
messages.

See the following table for information about some diagnostic messages.

6-4

Diagnostic Messages

Diagnostic Messages and Suggested Solutions

Message Probable Cause Suggested Solution

You may get this error
message while registering
the project DLL from the
DOS prompt. This usually
occurs if the MATLAB®

product is not on the
system path.

See “Failure to Find a Required
File” on page 6-3.

LoadLibrary
("component_name_1_0.dll")
failed - The specified
module could not be found.

You might also get this
error if you try to deploy
your component without
adding the path for the
DLL to the system path on
the target machine.

On the target machine where the
COM component is to be used:

1 Use the extractCTF.exe
utility to decompress the .ctf
file generated by the builder
when you built the COM
component.

2 Look at the files in the CTF,
and note the path for the DLL.

3 Add this path to the system
path.

See the MATLAB Compiler
documentation for
more information about
extractctf.exe.

MBUILD.BAT: Error: The
chosen compiler does
not support building COM
objects.

The chosen compiler does
not support building COM
objects.

Rerun mbuild -setup and choose
a supported compiler.

6-5

6 Troubleshooting

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

Error in component_name.
class_name.x: Error
getting data conversion
flags.

This is often caused by
mwcomutil.dll not being
registered.

1 Open a DOS window.

2 Change directories to
matlabroot\bin
\architecture.

3 Run the following command:
mwregsvr mwcomutil.dll

(matlabroot is your root
MATLAB directory.)

Error in VBAProject:
ActiveX component can't
create object.

• Project DLL is not
registered.

• An incompatible
MATLAB DLL exists
somewhere on the
system path.

If the DLL is not registered,

1 Open a DOS window.

2 Change directories to
projectdir\distrib.

3 Run the following command:
mwregsvr projectdll.dll

(projectdir represents the
location of your project files).

6-6

Diagnostic Messages

Diagnostic Messages and Suggested Solutions (Continued)

Message Probable Cause Suggested Solution

Error in VBAProject:
Automation error The
specified module could not
be found.

This usually occurs if
MATLAB is not on the
system path.

See “Failure to Find a Required
File” on page 6-3.

QueryInterface for
interface <COM OBJECT
NAME> failed.

You might be using
the incorrect number
and/or type of function
parameters to call into
your COM object.

Function calls to COM objects
that encapsulate MATLAB
functions must have the same
number and data type of
arguments as the COM object. In
general:

• Use a Variant data type for the
return type of the COM object.

• Use doubles as default numeric
input parameters (rather than
integers).

You might also use development
tools such as OLEVIEW and
Object Browser, which ship
with Microsoft® Visual Studio®

and Microsoft® Visual Basic®,
respectively, to verify the expected
function signature of the TypeLib
for the COM object.

Enhanced Error Diagnostics Using mstack Trace
Use this enhanced diagnostic feature to troubleshoot problems that occur
specifically during M-code execution.

To implement this feature, use .NET exception handling to invoke the M
function inside of the .NET application, as demonstrated in this try-catch
code block:

6-7

6 Troubleshooting

try
{
Magic magic = new Magic();
magic.callmakeerror();
}
catch(Exception ex)
{
Console.WriteLine("Error: {0}", exception);
}

When an error occurs, the M-code stack trace is printed before the Microsoft
.NET application stack trace, as follows:

... Matlab M-code Stack Trace ...
at

file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\CalldmakeerrC
thy\MagicDemoComp\dmakeerror.m,name dmakeerror_error2,line at 14.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\CalldmakeerrC
thy\MagicDemoComp\dmakeerror.m,name dmakeerror_error1,line at 11.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\CalldmakeerrC
thy\MagicDemoComp\dmakeerror.m,name dmakeerror,line at 4.

at
file H:\compiler\g388611\cathy\MagicDemoCSharpApp\bin\Debug\CalldmakeerrC
thy\MagicDemoComp\calldmakeerror.m,name calldmakeerror,line at 2.

... .Application Stack Trace ...
at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction(String function

32 numArgsIn, MWArray[] argsIn)
at MathWorks.MATLAB.NET.Utility.MWMCR.EvaluateFunction(Int32 numArgsOu

rray[] argsIn)
at CalldmakeerrComp.Calldmakeerr.calldmakeerror() in h:\compiler\g3886

Calldmakeerr.cs:line 140
at MathWorks.Demo.MagicSquareApp.MagicDemoApp.Main(String[] args) in H

gicDemoCSharpApp\MagicDemoApp.cs:line 52

6-8

7

Reference Information

Requirements for the MATLAB®

Builder™ NE Product (p. 7-2)
Software requirements for using the
MATLAB® Builder™ NE product

Data Conversion Rules (p. 7-4) Details about the way that the
MATLAB Builder NE product
handles data

Overview of Data Conversion
Classes (p. 7-7)

Summary information about
MWArray classes

MWArray Class Specification
(p. 7-14)

Description of class information

7 Reference Information

Requirements for the MATLAB® Builder™ NE Product

In this section...

“System Requirements ” on page 7-2

“Compiler Requirements” on page 7-2

“Limitations and Restrictions” on page 7-3

System Requirements
System requirements and restrictions on use for the MATLAB® Builder™
NE product are as follows:

• All requirements for the MATLAB® Compiler™ product; see “Installation
and Configuration” in the MATLAB Compiler documentation.

• Microsoft® .NET Framework 1.1 or 2.0 must be installed.

• Either Microsoft® Visual Studio® 2003, Microsoft Visual Studio 2005, or
the corresponding .NET Framework SDK must be available on the target
machine.

Compiler Requirements
You must have the MATLAB® and MATLAB Compiler products installed to
install the MATLAB Builder NE product.

MATLAB Builder NE is available only on Windows® (32-bit and 64-bit
versions).

For an up-to-date list of all the compilers supported by MATLAB and MATLAB
Compiler, see the MathWorks Technical Support Department’s Technical Notes
at http://www.mathworks.com/support/tech-notes/1600/1601.html.

Note Before you use MATLAB Builder NE to build COM components, you
must run mbuild -setup to configure your C/C++ compiler to work with
MATLAB Compiler.

7-2

http://www.mathworks.com/support/tech-notes/1600/1601.html

Requirements for the MATLAB® Builder™ NE Product

Caution When generating unmanaged C++ code on Windows, only use the
MSVC compiler. This is the compiler that MathWorks™ uses most frequently
in test.

Limitations and Restrictions
In general, limitations and restrictions on the use of the builder are the same
as those for MATLAB Compiler. See the MATLAB Compiler documentation
for details.

Using CGI Scripts
As of Release 2006b, CGI scripts can call MATLAB using the Engine API
interface if you have a concurrent or designated license.

7-3

7 Reference Information

Data Conversion Rules

In this section...

“Managed Types to MATLAB® Arrays” on page 7-4

“MATLAB® Arrays to Managed Types” on page 7-5

“Character and String Conversion” on page 7-5

“Unsupported MATLAB® Array Types” on page 7-6

Managed Types to MATLAB® Arrays
The following table lists the data conversion rules used when converting
native .NET types to MATLAB® arrays.

Note The conversion rules listed in these tables apply to scalars, vectors,
matrices, and multidimensional arrays of the native types listed.

Conversion Rules: Managed Types to MATLAB® Arrays

Native .NET
Type

MATLAB
Array Comments

System.Double double —

System.Single single

System.Int64 int64

System.Int32 int32

System.Int16 int16

System.Byte int8

Available only when the makeDouble
constructor argument is set to false. The
default is true which creates a MATLAB
double type.

System.String char

System.Boolean logical

7-4

Data Conversion Rules

MATLAB® Arrays to Managed Types
The following table lists the data conversion rules used when converting
MATLAB arrays to native .NET types.

Note The conversion rules apply to scalars, vectors, matrices, and
multidimensional arrays of the listed MATLAB types.

Conversion Rules: MATLAB® Arrays to Managed Types

MATLAB
Type

.NET Type
(Primitive) .NET Type (Class) Comments

cell N/A MWCellArray

structure N/A MWStructArray

char System.String MWCharArray

Cell and struct
arrays have no
corresponding
.NET type.

double System.Double MWNumericArray

single System.Single MWNumericArray

Default is type
double.

uint64 System.Int64 MWNumericArray Not supported

uint32 System.Int32 MWNumericArray Not supported

uint16 System.Int16 MWNumericArray Not supported

uint8 System.Byte MWNumericArray None

logical System.Boolean MWLogicalArray None

Function
handle

N/A N/A None

Object N/A N/A None

Character and String Conversion
A native .NET string is converted to a 1-by-N MATLAB character array, with
N equal to the length of the .NET string.

7-5

7 Reference Information

An array of .NET strings (string[]) is converted to an M-by-N character array,
with M equal to the number of elements in the string ([]) array and N equal to
the maximum string length in the array.

Higher dimensional arrays of String are similarly converted.

In general, an N-dimensional array of String is converted to an N+1
dimensional MATLAB character array with appropriate zero padding where
supplied strings have different lengths.

Unsupported MATLAB® Array Types
The MATLAB® Builder™ NE product does not support the following MATLAB
array types because they are not CLS-compliant:

• int8

• uint16

• uint32

• uint64

7-6

Overview of Data Conversion Classes

Overview of Data Conversion Classes

In this section...

“Overview of Classes” on page 7-7

“Returning Data from the MATLAB® Product to Managed Code” on page 7-8

“Example of MWNumericArray in a .NET Application” on page 7-8

“Interfaces Generated by the MATLAB® Builder™ NE Product” on page 7-8

Overview of Classes
The data conversion classes are

MWArray

MWIndexArray

MWCellArray

MWCharacterArray

MWLogicalArray

MWNumericArray

MWStructArray

Note For complete reference information about the MWArray class hierarchy,
see the MWArray Class Library Reference (available online only).

MWArray and MWIndexArray are abstract classes. The other classes represent
the standard MATLAB® array types: cell, character, logical, numeric, and
struct. Each class provides constructors and a set of properties and methods
for creating and accessing the state of the underlying MATLAB array.

There are some data types (cell arrays, structure arrays, and arrays of
complex numbers) commonly used in the MATLAB product that are not
available as native .NET types. To represent these data types you must create
an instance of eitherMWCellArray, MWStructArray, or MWNumericArray.

7-7

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

7 Reference Information

Returning Data from the MATLAB® Product to
Managed Code
All data returned from a MATLAB function to a .NET method is represented
as an instance of the appropriate MWArray subclass. For example, a MATLAB
cell array is returned as an MWCellArray object.

Return data is not automatically converted to a native array. If you need to
get the corresponding native array type, call the ToArray method, which
converts a MATLAB array to the appropriate native data type, except for cell
and struct arrays. See the “Magic Square Example” on page 1-9.

Example of MWNumericArray in a .NET Application
Here is a code fragment that shows how to convert a double value (5.0) to a
MWNumericArray type:

MWNumericArray arraySize = 5.0;
magicSquare = magic.MakeSqr(arraySize);

After the double value is converted and assigned to the variable arraySize,
you can use the arraySize argument with the MATLAB based method
without further conversion. In this example, the MATLAB-based method is
magic.MakeSqr(arraySize).

Interfaces Generated by the MATLAB® Builder™ NE
Product
For each MATLAB function that you specify as part of a .NET component,
the builder generates an API based on the MATLAB function signature, as
follows:

• A single output signature that assumes that only a single output is required
and returns the result in a single MWArray rather than an array of MWArrays.

• A standard signature that specifies inputs of type MWArray and returns
values as an array of MWArray.

• A feval signature that includes both input and output arguments in the
argument list rather than returning outputs as a return value. Output
arguments are specified first, followed by the input arguments.

7-8

Overview of Data Conversion Classes

Single Output API

Note Typically you use the single output interface for MATLAB functions
that return a single argument. You can also use the single output interface
when you want to use the output of a function as the input to another function.

For each MATLAB function, the builder generates a wrapper class that has
overloaded methods to implement the various forms of the generic MATLAB
function call. The single output API for a MATLAB function returns a single
MWArray value.

For example, the following table shows a generic function foo along with the
single output API that the builder generates for its several forms.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

API if there
are no input
arguments

public MWArray foo()

API if there
are one or
more input
arguments

public MWArray foo(
MWArray In1,
MWArray In2
...
MWArray inN)

API if there are
optional input
arguments

public MWArray foo(
MWArray In1,
MWArray In2,

...,
MWArray inN
params MWArray[] varargin
)

In the example, the input arguments In1,In2, and inN are of type MWArray
objects.

7-9

7 Reference Information

Similarly, in the case of optional arguments, the params arguments are of type
MWArray. (The varargin argument is similar to the varargin function in
MATLAB — it allows the user to pass a variable number of arguments.)

Note When you call a class method in your .NET application, specify all
required inputs first, followed by any optional arguments.

Functions having a single integer input require an explicit cast to type
MWNumericArray to distinguish the method signature from a standard
interface signature that has no input arguments.

Standard API
Typically you use the standard interface for MATLAB functions that return
multiple output values.

The standard calling interface returns an array of MWArray objects rather
than a single array object.

The standard API for a generic function with none, one, more than one, or a
variable number of arguments, is shown in the following table.

Generic
MATLAB
function

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

API if there
are no input
arguments

public MWArray[] foo(
int numArgsOut
)

API if there
is one input
argument

public MWArray [] foo(
int numArgsOut,
MWArray In1
)

7-10

Overview of Data Conversion Classes

API if there
are two
to N input
arguments

public MWArray[] foo(
int numArgsOut,
MWArray In1,
MWArray In2,
...
MWArray InN
)

API if there
are optional
arguments,
represented
by the
varargin
argument

public MWArray[] foo(
int numArgsOut,
MWArray in1,
MWArray in2,
...,

MWArray InN,
params MWArray[] varargin
)

Details about the arguments for these samples of standard signatures are
shown in the following table:

Argument Description Details About this Argument

numArgsOut Number of
outputs

An integer indicating the number of
outputs you want the method to return.

The value of numArgsOutmust be less
than or equal to the MATLAB function
nargout.

The numArgsOut argument must always
be the first argument in the list

In1, In2,
...InN

Required input
arguments

All arguments that follow numArgsOut
in the argument list are inputs to the
method being called.

Specify all required inputs first. Each
required input must be of type MWArray
or one of its derived types.

7-11

7 Reference Information

Argument Description Details About this Argument

varargin Optional inputs You can also specify optional inputs if
your M-code uses the varargin input:
list the optional inputs, or put them in
an MWArray[] argument, placing the
array last in the argument list.

Out1, Out2,
... OutN

Output
arguments

With the standard calling interface, all
output arguments are returned as an
array of MWArrays.

feval API
In addition to the methods in the single API and the standard API, in most
cases, the builder produces an additional overloaded method. If the original
M-code contains no output arguments, then the builder will not generate
the feval method interface.

For a function with the following structure

function [Out1, Out2, ..., varargout] =
foo(In1, In2, ..., InN, varargin)

The builder generates the following API, known as the feval interface.

public void foo
(int numArgsOut,
ref MWArray [] ArgsOut,
MWArray[] ArgsIn)

where the arguments are as follows:

7-12

Overview of Data Conversion Classes

numArgsOut Number of
outputs

Same as standard interface

An integer indicating the number of
outputs you want to return.

This number generally matches the
number of output arguments that
follow. The varargout array counts
as just one argument, if present.

ref MWArray []
ArgsOut

Output
arguments

Following numArgsOut are all the
outputs of the original M-code, each
listed in the same order as they
appear on the left-hand side of the
original M-code.

A ref attribute prefaces all output
arguments indicating that these
arrays are passed by reference.

MWArray[] ArgsIn Input
arguments

MWArray types or a supported .NET
primitive type.

When you pass an instance of
an MWArray type, the underlying
MATLAB array is passed directly to
the called function. Native types are
first converted to MWArray types.

7-13

7 Reference Information

MWArray Class Specification
For complete reference information about the MWArray class hierarchy, see the
MWArray Class Library Reference (available online only).

See “Specifying Component Assembly and Namespace” on page 3-4 for
information about referencing the classes in your .NET programming
environment.

7-14

file:///B:/matlab/doc/src/toolbox/dotnetbuilder/MWArrayAPI/HTML/index.html

8

Function Reference

componentinfo

Purpose Query system registry about COM component created with the
MATLAB® Builder™ NE product

Syntax info = componentinfo

info = componentinfo(component_name)

info = componentinfo(component_name, major_revision_number)

info = componentinfo(component_name, major_revision_number,

minor_revision_number)

Arguments component_name A MATLAB® string providing the
name of a COM component created
by the MATLAB Builder NE product.
Names are case sensitive. If this
argument is not supplied, the function
returns information on all installed
components.

major_revision_number Component major revision number.
If this argument is not supplied, the
function returns information on all
major revisions.

minor_revision_number Component minor revision number.
Default value is 0.

Description info = componentinfo returns information for all components
installed on the system.

info = componentinfo(component_name) returns information for all
revisions of component_name.

info = componentinfo(component_name, major_revision_number)
returns information for the most recent minor revision corresponding to
major_revision_number of component_name.

info = componentinfo(component_name, major_revision_number,
minor_revision_number) returns information for the specific major
and minor version of component_name.

8-2

componentinfo

The return value is an array of structures representing all the registry
and type information needed to load and use the component.

When you supply a component name, major_revision_number and
minor_revision_number are interpreted as shown below.

Value Information Returned

> 0 Information on a specific major and minor revision

0 Information on the most recent revision
When omitted, minor_revision_number is assumed to be
equal to 0.

< 0 Information on all versions

The information about a component has the fields shown in the
following tables.

Registry Information Returned by componentinfo

Field Description

Name Component name

TypeLib Component type library

LIBID Component type library GUID

MajorRev Major version number

MinorRev Minor version number

FileName Type library file name and path. Since all COM
components created with the builder have the type
library bound into the DLL, this file name is the same
as the DLL name and path.

8-3

componentinfo

Registry Information Returned by componentinfo (Continued)

Field Description

Interfaces An array of structures defining all interface definitions
in the type library. Each structure contains:

Name - Interface name

IID - Interface GUID

CoClasses Array of structures defining all COM classes in the
component. Each structure contains:

Name - Class name

CLSID - GUID of the class

ProgID - Version dependent program ID

VerIndProgID - Version independent program ID

InprocServer32 - Full name and path to DLL

Methods - A structure containing function prototypes
of all class methods defined for this interface. This
structure contains four fields:

IDL - An array of Interface Description Language
function prototypes

M - An array of MATLAB function prototypes

C - An array of C-language function prototypes

VB - An array of VBA function prototypes

Properties - A cell array containing the names of all
class properties.

Events - A structure containing function prototypes
of all events defined for this class. This structure
contains four fields:

IDL - An array of IDL (Interface Description Language)
function prototypes.

M - An array of MATLAB function prototypes.

C - An array of C-Language function prototypes.

VB - An array of VBA function prototypes
8-4

componentinfo

Usage Use the componentinfo function to get information (such as class name,
program id) to pass on to users of a component that you create.

The componentinfo function also provides a record of changes made to
the registry on your development machine. This information might be
useful for debugging if you run into problems.

Examples Function Call Description of Return
Information

Info = componentinfo Information for all installed
components.

Info =
componentinfo('mycomponent')

Information for all revisions
of mycomponent.

Info =
componentinfo('mycomponent',1,0)

Information for revision 1.0
of mycomponent.

8-5

deploytool

Purpose Open GUI for the MATLAB® Builder™ NE and MATLAB® Compiler™
products

Syntax deploytool

Description The deploytool command displays the Deployment Tool dialog box,
which is the graphical user interface (GUI) for the MATLAB Builder
NE and MATLAB Compiler products.

See “Creating a .NET Component” on page 1-4 to get started using the
Deployment Tool to create .NET and COM components, and see the
MATLAB Compiler documentation for information about using the
Deployment Tool to create standalone applications and libraries.

See for reference information about the GUI.

8-6

mcc

Purpose Invoke the MATLAB® Compiler™ product

Syntax mcc - W 'dotnet:component_name,class_name,
0.0|1.1|2.0, Private|Encryption_Key_Path'
file1[file2...fileN]
[class{class_name:file1 [,file2,...,fileN]},...]
[-d output_dir_path]
-T link:lib

Description mcc is the MATLAB® command that invokes the MATLAB Compiler
product. You can issue the mcc command either from the MATLAB
command prompt (MATLAB mode) or the DOS or UNIX command line
(standalone mode).

mcc prepares M-file(s) for deployment outside of the MATLAB
environment. When used with the MATLAB® Builder™ NE product,
wrapper files can be used with all CLS compliant languages, such as
C#, Microsoft® Visual Basic® .NET, and C++ with Managed Extensions.

For each M-file, the main function is a method of the wrapper class
generated by MATLAB Builder NE.

Options The -W option is used when running mcc with MATLAB Builder NE.

For a complete list of all mcc command options, see mcc in the MATLAB
Compiler User’s Guide documentation.

-W
Tells the compiler to create a wrapper function. This option takes
a string argument that specifies the following characteristics of
the component.

-W String Elements Description

dotnet: Keyword that tells the compiler the type of
component to create, followed by a colon. Specify
dotnet to create a .NET component.

8-7

mcc

-W String Elements Description

component_name Specifies the name of the component and its
namespace, which is a period-separated list, such
as companyname.groupname.component.

class_name Specifies the name of the .NET class to be created.

0.0|1.1|2.0 Specifies the version of the .NET framework you
want to use to compile the component. You can
specify one of three values:
0.0 — Use latest supported version on the target
machine
1.1 — Use Version 1.1 of the framework
2.0 — Use Version 2.0 of the framework

Private|Encryption_Key_Path Specifies whether the component to be created is a
private assembly or a shared assembly. To create a
shared assembly, you must specify the full path to
the encryption key file used to sign the assembly.

file1 [file2...fileN]
Specifies the M-file or M-files that are to be encapsulated as
methods in the class being created (class_name).

class{class_name:file1 [,file2,...,fileN]},...
(Optional) Specifies additional classes that you want to include
in the component. To use this option, you specify the class name,
followed by a colon, and then the names of the files you want to
include in the class. You can include this multiple times to specify
multiple classes.

[-d output_dir_path]
(Optional) Tells the builder to create a directory and copy the
output files to it. If you use mcc instead of the Deployment Tool,
the project_directory\src and project_directory\distrib
directories are not automatically created.

8-8

mcc

-T
Specifies the output type. To create a .NET component, specify
the keyword link:lib, which links objects into a shared library
(DLL).

8-9

mcc

8-10

9

Creating and Installing
COM Components

Building a Deployable Application
(p. 9-2)

How to create and package a COM
component

Using the Command-Line Interface
(p. 9-4)

How you can use the mcc command
instead of the GUI to build COM
objects

Installing COM Components on a
Target Computer (p. 9-8)

Describes how to install/deploy
created components on target
computers

9 Creating and Installing COM Components

Building a Deployable Application
The steps to create a COM component are very similar to the steps described
in “Creating a .NET Component” on page 1-4. Here is a brief summary of
the steps:

1 If you have not already done so, execute the following command in the
MATLAB® product:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

2 Open the Deployment Tool dialog box.

deploytool

3 Click the New Project button in the toolbar to open the New Project
Settings dialog box.

4 Specify the name and location for the project.

5 Add files that you want to encapsulate by dragging them to the Deployment

Tool or clicking the Add File button in the toolbar.

6 Optionally, add classes by clicking the Add Classes button in the toolbar.

7 Optionally, click the Settings button in the toolbar to specify various
properties for building and packaging your component.

8 Save the project by clicking the Save Project button in the toolbar.

9 Build the project by clicking the Build button in the toolbar.

10 Package the project by clicking the Package button in the toolbar. The
package is a self-extracting executable named componentname.exe.

9-2

Building a Deployable Application

Files in the Self-Extracting Executable

File Purpose

componentname.ctf Component Technology File
(ctf) archive. This is a
platform-dependent file that
must correspond to the end user’s
platform.

componentname_projectversion Component that encapsulates
M-code

_install.bat Script run by the self-extracting
executable

MCRInstaller.exe Self-extracting MATLAB
Compiler Runtime library utility;
platform-dependent file that
must correspond to the end user’s
platform.

MCRInstaller.exe installs
MATLAB Compiler Runtime
(MCR), which users of your
component need to install on the
target machine once per release.

11 Distribute the self-extracting executable to your users.

9-3

9 Creating and Installing COM Components

Using the Command-Line Interface
A MATLAB® class cannot be directly compiled into a COM object. You can,
however, use a user-generated class inside an M-file and build a COM object
from that file. You can use the MATLAB command line interface instead of
the GUI to create COM objects. Do this by issuing the mcc command with
options. If you use mcc, you do not create a project.

Note See the MATLAB® Compiler™ documentation for a complete
description of the mcc command and its options.

The following table provides an overview of some mcc options related to
components, along with syntax and examples of their usage.

Using the Command Line to Create COM Components

Action to Perform mcc Option to Use Description

-W com The W option with com as the type controls the
generation of wrapper files, which you can use to
support components.

Syntax
mcc -W
'com:<component_name>[,<class_name>[,<major>.<minor>]]'

An unspecified <class_name> defaults to <component_name>, and an
unspecified version number defaults to the latest version built or 1.0, if
there is no previous version.

Create component
that has one class.

Example
mcc -W 'com:mycomponent,myclass,1.0' -T link:lib foo.m bar.m

The example creates a COM component called mycomponent, which
contains a single COM class named myclass with methods foo and bar,
and a version of 1.0.

9-4

Using the Command-Line Interface

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

Not needed A separate COM named <class_name> is created
for each class argument that is passed.

Following the <class_name> parameter is a
comma-separated list of source files that are
encapsulated as methods for the class.

Syntax
class{<class_name>:[file, [file,...]]}

Add additional
classes to a COM
component.

Example
mcc -B 'ccom:mycomponent,myclass,1.0'
foo.m bar.m class{myclass2:foo2.m, bar2.m}

The example creates a COM component named mycomponent with two
classes: myclass has methods foo and bar, and myclass2 has methods
foo2 and bar2. The version is version 1.0.

-B ccom: Uses the bundle file.

Syntax
mcc -B '<filename>'[:<a1>,<a2>,...,<an>]

Simplify the
command line input
for components.

Example
mcc -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

9-5

9 Creating and Installing COM Components

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

-S By default, a new MCR instance is created for each
instance of each COM class in the component. Use
-S to change the default.

This option tells the builder to create a single
MCR at the time when the first COM class is
instantiated. This MCR is reused and shared
among all subsequent class instances, resulting
in more efficient memory usage and eliminating
the MCR startup cost in each subsequent class
instantiation.
When using -S, note that all class instances
share a single MATLAB workspace and share
global variables in the M-files used to build the
component. Therefore, properties of a COM class
behave as static properties instead of instance-wise
properties.

Note The default behavior dictates that a new
MCR be created for each instance of a class, so
when the class is destroyed, the MCR is destroyed
as well. If you want to retain the state of global
variables (such as those allocated for drawing
figures, for instance), use the -S option.

Control how each
COM class uses the
MCR.

Example
mcc -S -B 'ccom:mycomponent,myclass,1.0' foo.m bar.m

The example creates a COM component called mycomponent containing
a single COM class named myclass with methods foo and bar, and
a version of 1.0.

When multiple instances of this class are instantiated in an application,
only one MCR is initialized, and it is shared by each instance.

9-6

Using the Command-Line Interface

Using the Command Line to Create COM Components (Continued)

Action to Perform mcc Option to Use Description

-d The \src and \distrib subdirectories are needed
to package components.

Create
subdirectories
needed for
deployment and
copy associated files
to them.

Syntax
-d directoryname

9-7

9 Creating and Installing COM Components

Installing COM Components on a Target Computer
To install and deploy a COM object created with MATLAB® COM Builder,
perform the following steps:

1 Install the MATLAB Compiler Runtime as described in the MATLAB
Compiler documentation.

2 Build the package as described in “Building a Deployable Application ”
on page 9-2.

3 Copy the package to the target computer and run the package.

4 From a Windows® command prompt on the target system, navigate to the
directory where you have saved the package. If you use the command dir,
you should see the .dll created for your COM object. You will need to
register the .dll manually using the command regsvr32, as follows:

regsvr32 myCom_1_0.dll

9-8

10

Programming with COM
Components Created by the
MATLAB® Builder™ NE
Product

General Techniques (p. 10-3) Describes the integration of COM
components created with the
MATLAB® Builder™ NE product
into programs

Registering and Referencing the
Utility Library (p. 10-5)

How to register and reference the
utilities you need in your program

Creating an Instance of a Class in
Microsoft® Visual Basic® (p. 10-6)

Describes two techniques for calling
a class method

Calling the Methods of a Class
Instance (p. 10-9)

Describes how you call the class
methods to access the encapsulated
M-functions

Calling a COM Object in a Visual
C++® Program (p. 10-12)

How to integrate a COM object into
a Visual C++® program

Using a COM Component in a .NET
Application (p. 10-15)

An example of how to use a COM
component in a .NET application
in both C# and Microsoft® Visual
Basic® implementations

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Adding Events to COM Objects
(p. 10-22)

Describes how you can turn a
MATLAB® function into an event
function

Passing Arguments (p. 10-27) Describes how you can pass multiple
arguments as a varargin array by
creating a Variant array, assigning
each element of the array to the
respective input argument

Using Flags to Control Array
Formatting and Data Conversion
(p. 10-29)

Describes array formatting and data
conversion flags

Using MATLAB® Global Variables in
Microsoft® Visual Basic® (p. 10-36)

Describes class properties, which
allow an object to retain an internal
state between method calls

Blocking Execution of a Console
Application that Creates Figures
(p. 10-39)

How to handle interaction in a
console-based program that creates
MATLAB figures

Obtaining Registry Information
(p. 10-42)

How to use MATLAB function
componentinfo to query the system
registry for any installed COM
components created with the
MATLAB Builder NE product

Handling Errors During a Method
Call (p. 10-44)

Describes the Microsoft Visual Basic
exception handling capability

10-2

General Techniques

General Techniques
After you package and install a COM component created by the MATLAB®

Builder™ NE product, you can access the component in any program that
supports COM, such as Microsoft® Visual Basic®, Microsoft® Visual C++®,
or Visual C#.

Your code module must do the following:

• Load the components created by the builder

- “Registering and Referencing the Utility Library” on page 10-5

- “Creating an Instance of a Class in Microsoft® Visual Basic®” on page
10-6

• Call methods of the component class

- “Calling the Methods of a Class Instance” on page 10-9

- “Calling a COM Object in a Visual C++® Program” on page 10-12

- “Adding Events to COM Objects” on page 10-22

- “Obtaining Registry Information” on page 10-42

• Deal with data conversion and parameter passing

- “Passing Arguments ” on page 10-27

- “Using Flags to Control Array Formatting and Data Conversion” on
page 10-29

- “Using MATLAB® Global Variables in Microsoft® Visual Basic®” on
page 10-36

• Process errors

- “Handling Errors During a Method Call” on page 10-44

10-3

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Note These topics provide general information on how to integrate COM
components created with the builder into your COM-compliant programs.
The presentation focuses on the special programming techniques needed for
components based on the MATLAB® product and generated by the builder. It
assumes that you have a working knowledge of the programming language
used in these programs.

For information about programming with COM objects in Microsoft® Visual
Studio®, see articles in the MSDN Library, such as Calling COM Components
from .NET Clients.

10-4

http://msdn.microsoft.com/library/
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dndotnet/html/callcomcomp.asp

Registering and Referencing the Utility Library

Registering and Referencing the Utility Library
The MWComUtil library provided with the MATLAB® Builder™ NE product is
freely distributable. The MWComUtil library includes seven classes and three
enumerated types. These utilities are required for array processing, and they
provide type definitions used in data conversion.

The library is contained in the file mwcomutil.dll. It must be registered once
on each machine that uses components created with the builder.

Register the MWComUtil library at the DOS command prompt with the
command:

mwregsvr mwcomutil.dll

To use the types in the library, make sure that you reference the MWComUtil
library in your current project:

1 Select Tools > References.

2 Select MWComUtil 7.5 Type Library.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the directory in which the component resides.

10-5

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Creating an Instance of a Class in Microsoft® Visual Basic®

In this section...

“CreateObject Function” on page 10-6

“Microsoft® Visual Basic® New Operator” on page 10-7

“Advantages of Each Technique” on page 10-7

“Declaring a Reusable Class Instance” on page 10-8

Each technique listed here has advantages and disadvantages.

For an example of creating a class instance in Microsoft® Visual C++®, see
“Calling a COM Object in a Visual C++® Program” on page 10-12.

CreateObject Function
This method uses the Microsoft® Visual Basic® application program interface
(API) CreateObject function to create an instance of the class.

1 Dimension a variable of type Object to hold a reference to the class
instance.

2 Call CreateObject with the Program ID (ProgID) for the class as an
argument.

Here is a programming example:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As Object

On Error Goto Handle_Error
aClass = CreateObject("mycomponent.myclass.1_0")
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

10-6

Creating an Instance of a Class in Microsoft® Visual Basic®

Microsoft® Visual Basic® New Operator
This method uses the Microsoft Visual Basic New operator on a variable
explicitly dimensioned as the class to be created.

1 Make sure that you reference the type library containing the class in the
current Visual Basic® project.

a Open the Visual Basic editor.

b Click Project > References > Available References.

c Select the necessary type library.

2 Dimension the class instance.

3 Use New to instantiate the class with a particular name.

The following sample function, foo, shows how to use the New operator to
create a class instance:

Function foo(x1 As Variant, x2 As Variant) As Variant
Dim aClass As mycomponent.myclass

On Error Goto Handle_Error
Set aClass = New mycomponent.myclass
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

In this example, the class instance could be dimensioned as simply myclass.
The full declaration in the form <component-name>.<class-name> guards
against name collisions that could occur if other libraries in the current
project contain types named myclass.

Advantages of Each Technique
Both techniques (using CreateObject and using New) are equivalent in the
way they function, but each has different advantages. The first technique
does not require a reference to the type library in the Visual Basic project,
while the second results in faster code execution. The second technique has

10-7

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

the added advantage of enabling Auto-List-Members and Auto-Quick-Info
in the Visual Basic editor to help you work with your classes.

Declaring a Reusable Class Instance
In the previous examples, the class instance used to call the method is a
local variable within a procedure. Thus a new class instance is created and
destroyed for each call to the method. As an alternative, you can declare a
single module-scoped class instance that is reused by all function calls. The
next example shows this technique:

Dim aClass As mycomponent.myclass

Function foo(x1 As Variant, x2 As Variant) As Variant
On Error Goto Handle_Error
If aClass Is Nothing Then

Set aClass = New mycomponent.myclass
End If
' (call some methods on aClass)
Exit Function

Handle_Error:
foo = Err.Description

End Function

10-8

Calling the Methods of a Class Instance

Calling the Methods of a Class Instance

In this section...

“Standard Mapping Technique” on page 10-9

“Variant” on page 10-10

“Examples of Passing Input and Output” on page 10-10

Standard Mapping Technique
After you create a class instance, you can call the class methods to access
the encapsulated M-functions. The MATLAB® Builder™ NE product uses a
standard technique to map the original MATLAB® function syntax to the
method’s argument list. This standard mapping technique is as follows:

• nargout

When a method has output arguments, the first argument is always
nargout, which is of type Long. This input parameter passes the normal
MATLAB nargout parameter to the encapsulated function and specifies
how many outputs are requested. Methods that do not have output
arguments do not pass a nargout argument.

• Output parameters

Following nargout are the output parameters listed in the same order as
they appear on the left side of the original MATLAB function.

• Input parameters

Next come the input parameters listed in the same order as they appear on
the right side of the original MATLAB function.

For example, the most generic MATLAB function is

function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

This function maps directly to the following Visual Basic® signature:

Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _

10-9

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

.

.
varargout As Variant, _
X1 As Variant, _
X2 As Variant, _
.
.
varargin As Variant)

See “Calling Conventions” on page 12-23 for more details and examples of the
standard mapping from MATLAB functions to COM class method calls.

Variant
All input and output arguments are typed as Variant, the default Visual
Basic data type. The Variant type can hold any of the basic Visual Basic
types, arrays of any type, and object references. See “Data Conversion” on
page 12-8 for details about the conversion of any basic type to and from
MATLAB data types.

In general, you can supply any Visual Basic type as an argument to a class
method, with the exception of Visual Basic User Defined Types (UDTs).

When you pass a simple Variant type as an output parameter, the called
method allocates the received data and frees the original contents of the
Variant. In this case it is sufficient to dimension each output argument as a
single Variant. When an object type (like an Excel® Range) is passed as an
output parameter, the object reference is passed in both directions, and the
object’s Value property receives the data.

Examples of Passing Input and Output
The following examples show how to pass input and output parameters to the
builder component class methods in Visual Basic.

The first example is a function, foo, that takes two arguments and returns one
output argument. The foo function dispatches a call to a class method that
corresponds to a MATLAB function of the form function y = foo(x1,x2).

Function foo(x1 As Variant, x2 As Variant) As Variant

10-10

Calling the Methods of a Class Instance

Dim aClass As Object
Dim y As Variant

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,x1,x2)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

The second example rewrites the foo function as a subroutine:

Sub foo(Xout As Variant, X1 As Variant, X2 As Variant)
Dim aClass As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,Xout,X1,X2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

10-11

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Calling a COM Object in a Visual C++® Program

In this section...

“Using the MATLAB® Builder™ NE Product to Create the Object” on page
10-12

“Using the Component in a Visual C++® Program” on page 10-13

Note You must choose a Microsoft® compiler to compile and use any COM
object.

Using the MATLAB® Builder™ NE Product to Create
the Object
Build the COM object as follows:

1 Start the MATLAB® product.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

3 Open the MATLAB Editor and create a file named adddoubles.m with
the following M-code:

function z=adddoubles(x,y)
z=x+y;

4 In the MATLAB Command Window, issue the following command to open
the Deployment Tool:

deploytool

5 Create a project named mycomponent in any location you want.

10-12

Calling a COM Object in a Visual C++® Program

6 Add adddoubles.m to the mycomponentclass folder. This means that the
MATLAB function, adddoubles, will be a method in mycomponentclass

7 Click the Build icon in the Deployment Tool toolbar.

The builder generates a self-registering COM object that you can use in
your Visual C++® code.

Using the Component in a Visual C++® Program
Use the COM object you have created as follows:

1 Create a Visual C++ program in a file named matlab_com_example.cpp
with the following code:

#include <iostream>

using namespace std;

// include the following files generated by MATLAB Builder NE

#include "mycomponent\src\mycomponent_idl.h"

#include "mycomponent\src\mycomponent_idl_i.c"

int main() {

// Initialize argument variables

VARIANT x, y, out1;

//Initialize the COM library

HRESULT hr = CoInitialize(NULL);

//Create an instance of the COM object you created

Imycomponentclass *pImycomponentclass;

hr=CoCreateInstance

(CLSID_mycomponentclass, NULL, CLSCTX_INPROC_SERVER, IID_Imycomponentclass,

(void **)&pImycomponentclass);

// Set the input arguments to the COM method

x.vt=VT_R8;

y.vt=VT_R8;

x.dblVal=7.3;

y.dblVal=1946.0;

// Access the method with arguments and receive the output out1

hr=(pImycomponentclass -> adddoubles(1,&out1,x,y));

// Print the output

cout << "The input values were " << x.dblVal << " and "

10-13

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

<< y.dblVal << ".\n";

cout << "The output of feeding the inputs into the adddoubles method is "

<< out1.dblVal << ".\n";

// Uninitialize COM

CoUninitialize();

return 0;

}

2 In the MATLAB Command Window, compile the program as follows:

mbuild matlab_com_example.cpp

When you run the executable, the program displays two numbers and their
sum, as returned by the COM object’s adddoubles.

10-14

Using a COM Component in a .NET Application

Using a COM Component in a .NET Application

In this section...

“C# Implementation” on page 10-15

“Microsoft® Visual Basic® Implementation” on page 10-18

The following examples demonstrates the optimal fitting of a nonlinear
function to a set of data in both C# and Microsoft® Visual Basic®

implementations.

Note in particular how memory is freed and allocated. Use these examples as
models when using COM components in your own .NET applications.

C# Implementation

// ***

//

// CurveFitApp.cs

//

// This file is an example for using MATLAB COM component inside .NET application.

//

// Copyright 2001-2006 The MathWorks, Inc.

//

// ***

using System;

using CurveFitDemoComp;

namespace MathWorks.Demo.CurveFitApp

{

/// args[0] - a positive integer representing number of

/// data points.

/// class CurveFitApp

{

/// /// The main entry point for the application.

/// [STAThread]

static void Main(string[] args)

10-15

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

{

CurveFitClass curveFitting = null;

try

{

// Get user specified command line arguments or

// set default

int numberOfDataPts= (0 != args.Length)

? System.Int32.Parse(args[0]) : 4;

// Input that will be passed to the COM method

double[] xData = new double[numberOfDataPts];

double[] yData = new double[numberOfDataPts];

for(int i=1; i<= numberOfDataPts; i++)

{

xData[i-1] = i;

yData[i-1] = i;

}

// Objects that will be returned by the COM method

object coefficients = new object();

object lambda = new object();

// Create the curve fit object

curveFitting = new CurveFitClass();

if(curveFitting != null)

{

curveFitting.MWFlags.ArrayFormatFlags.TransposeOutput =

true;

// Call the COM method

curveFitting.fitdemo(2, ref coefficients,

ref lambda, xData, yData);

// Display values of co-efficients returned by COM method

Console.WriteLine("\nCo-efficient:\n");

// Convert the coefficients array to a two

// dimensional native double array

if(coefficients.GetType().IsArray)

{

10-16

Using a COM Component in a .NET Application

System.Array coeffArray =

(System.Array)coefficients;

// Display the array elements:

for (int i= coeffArray.GetLowerBound(0);

i <= (int)coeffArray.GetUpperBound(0); i++)

for (int j= coeffArray.GetLowerBound(1);

j <= (int)coeffArray.GetUpperBound(1); j++)

Console.WriteLine("Result({0},{1})= {2}", i, j,

coeffArray.GetValue(i,j));

}

// Display values of lambda returned by COM method

Console.WriteLine("\nLambda:\n");

// Convert the lambda array to a two dimensional

// native double array

if(lambda.GetType().IsArray)

{

System.Array lambdaArray = (System.Array)lambda;

// Display the array elements:

for (int i= lambdaArray.GetLowerBound(0);

i <= (int)lambdaArray.GetUpperBound(0); i++)

for (int j= lambdaArray.GetLowerBound(1);

j <= (int)lambdaArray.GetUpperBound(1); j++)

Console.WriteLine("Result({0},{1})= {2}", i, j,

lambdaArray.GetValue(i,j));

}

}

Console.ReadLine(); // Wait for user to exit application

}

catch(System.Runtime.InteropServices.COMException exception)

{

Console.WriteLine("COM Error: {0}", exception);

}

catch(Exception exception)

{

Console.WriteLine("Error: {0}", exception);

}

10-17

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

finally

{

// Free COM object

if(curveFitting != null)

System.Runtime.InteropServices.Marshal.ReleaseComObject(curveFitting);

}

}

}

}

Microsoft® Visual Basic® Implementation

' ***

'

' CurveFitApp.vb

'

' This file is an example for using MATLAB COM component inside .NET Visaul

' Basic application.

'

' Copyright 2001-2006 The MathWorks, Inc.

'

' ***

Imports System

Imports CurveFitDemoComp

Namespace MathWorks.Demo.CurveFitApp

' <remarks>

' args[0] - a positive integer representing number of data points.

' </remarks>

Public Class CurveFitApp

#Region " MAIN "

' <summary>

' The main entry point for the application.

' </summary>

Shared Sub Main(ByVal args() As String)

10-18

Using a COM Component in a .NET Application

Dim curveFitting As CurveFitClass = Nothing

Try

' Get user specified command line arguments or set default

Dim numberOfDataPts As Integer

If (0 <> args.Length) Then

numberOfDataPts = System.Int32.Parse(args(0))

Else

numberOfDataPts = 4

End If

' Input that will be passed to the COM method

Dim xData() As Double = New Double(numberOfDataPts - 1) {}

Dim yData() As Double = New Double(numberOfDataPts - 1) {}

For i As Integer = 1 To numberOfDataPts

xData(i - 1) = i

yData(i - 1) = i

Next i

' Objects that will be returned by the COM method

Dim coefficients As Object = New Object

Dim lambda As Object = New Object

' Create the curve fit object

curveFitting = New CurveFitClass

If Not (curveFitting Is Nothing) Then

curveFitting.MWFlags.ArrayFormatFlags.TransposeOutput = True

' Call the COM method

curveFitting.fitdemo(2, coefficients, lambda, xData, yData)

' Display values of co-efficients returned by COM method

Console.WriteLine("{0}Co-efficient:{1}", Chr(10), Chr(10))

' Convert the coefficients array to a two dimensional

' native double array

If (coefficients.GetType().IsArray) Then

10-19

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Dim coeffArray As System.Array = CType(coefficients,

System.Array)

' Display the array elements:

For i As Integer = coeffArray.GetLowerBound(0)

To coeffArray.GetUpperBound(0)

For j As Integer = coeffArray.GetLowerBound(1)

To coeffArray.GetUpperBound(1)

Console.WriteLine("Result({0},{1})= {2}", i, j,

coeffArray.GetValue(i, j))

Next j

Next i

End If

' Display values of lambda returned by COM method

Console.WriteLine("{0}Lambda:{1}", Chr(10), Chr(10))

' Convert the lambda array to a two dimensional native

' double array

If (lambda.GetType().IsArray) Then

Dim lambdaArray As System.Array = CType(lambda,

System.Array)

' Display the array elements:

For i As Integer = lambdaArray.GetLowerBound(0)

To lambdaArray.GetUpperBound(0)

For j As Integer = lambdaArray.GetLowerBound(1

) To lambdaArray.GetUpperBound(1)

Console.WriteLine("Result({0},{1})= {2}", i, j,

lambdaArray.GetValue(i, j))

Next j

Next i

End If

End If

Console.ReadLine() ' Wait for user to exit application

Catch exception As System.Runtime.InteropServices.COMException

Console.WriteLine("COM Error: {0}", exception)

10-20

Using a COM Component in a .NET Application

Catch exception As Exception

Console.WriteLine("Error: {0}", exception)

Finally

' Free COM object

If Not (curveFitting Is Nothing) Then

System.Runtime.InteropServices.Marshal.ReleaseComObject(curveFitting)

End If

End Try

End Sub

#End Region

End Class

End Namespace

10-21

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Adding Events to COM Objects

In this section...

“MATLAB® Language Pragma” on page 10-22

“Using a Callback with a Microsoft® Visual Basic® Event” on page 10-23

MATLAB® Language Pragma
The MATLAB® Builder™ NE product supports events, or callbacks, through a
MATLAB® language pragma. A pragma is a directive to the builder, beyond
what is conveyed in the MATLAB language itself. The pragma for adding
events is #event.

The MATLAB product interprets the %#event statement as a comment. But
when the builder encapsulates a function, the #event pragma tells the builder
that the function requires an outgoing interface and an event handler.

Note The #event pragma is supported only for COM components built with
MATLAB Builder NE. You can not use this feature with .NET components
created by MATLAB Builder NE or COM components built with the MATLAB
Builder EX product.

To use the #event pragma:

1 Write the code for a MATLAB function stub that serves as the prototype for
the event. This function stub is the event function.

2 Build the COM component as usual. Make sure that you specify the event
function you wrote in the MATLAB product as a method in the component
class.

3 In your application, add the code to implement the event handler (the event
handler belongs to the COM object created by the builder). The code for
the event handler should implement the event function, or function stub,
that you wrote in MATLAB.

10-22

Adding Events to COM Objects

When an encapsulated M-function (now a method in a COM object in your
application) calls the event function, the call is dispatched to the event
handler in the application.

Some examples of how you might use callbacks in your code are

• To give the application periodic feedback during a long-running calculation
by an encapsulated M-function. For example, if you have a task that
requires n iterations, you might signal an event to increment a progress bar
in the user interface on each iteration.

• To signal a warning during a calculation but continue execution of the task.

• To return intermediate results of a calculation to the user and continue
execution of the task.

Using a Callback with a Microsoft® Visual Basic®

Event
The example in this topic shows how to use a callback in conjunction with a
Microsoft® Visual Basic® ProgressBar control.

The MATLAB function iterate runs through n iterations and fires an event
every inc iterations. When the function finishes, it returns a single output.
To simulate actually doing something, the sample code includes a pause
statement in the main loop so that the function waits for 1 second in each
iteration.

The sample includes MATLAB functions iterate.m and progress.m.

iterate.m

function [x] = iterate(n,inc)
%initialize x
x = 0;
% Run n iterations, callback every inc time
k = 0;
for i=1:n

k = k + 1;
if k == inc

progress(i);

10-23

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

k = 0;
end;
% Do some work on x...
x = x + 1;
% Pause for 1 second to simulate doing
% something
pause(1);

end;

progess.m

function progress(i)
%#event
i

The iterate function runs through n iterations and calls the progress
function every inc iterations, passing the current iteration number as an
argument. When this function is executed in MATLAB, the value of i appears
each time the progress function gets called.

Suppose you create a the builder component that has these two functions
included as class methods. For this example the component has a single class
named myclass. The resulting COM class has a method iterate and an
event progress.

To receive the event calls, implement a “listener” in the application. The
Visual Basic® syntax for the event handler for this example is

Sub aClass_progress(ByVal i As Variant)

where aClass is the variable name used for your class instance. The ByVal
qualifier is used on all input parameters of an event function. To enable
the listening process, dimension the aClass variable with the WithEvents
keyword.

This example uses a simple Visual Basic form with three TextBox controls,
one CommandButton control, and one ProgressBar control. The first text box,
Text1, inputs the number of iterations, stored in the form variable N. The
second text box, Text2, inputs the callback increment, stored in the variable
Inc. The third text box, Text3, displays the output of the function when it

10-24

Adding Events to COM Objects

finishes executing. The command button, Command1, executes the iterate
method on your class when pressed. The progress bar control, ProgressBar1,
updates itself in response to the progress event.

'Form Variables
Private WithEvents aClass As myclass 'Class instance
Private N As Long 'Number of iterations
Private Inc As Long 'Callback increment
Private Sub Form_Load()
'When form is loaded, create new myclass instance

Set aClass = New myclass
'Initialize variables
N = 2
Inc = 1

End Sub
Private Sub Text1_Change()
'Update value of N from Text1 text whenever it changes

On Error Resume Next
N = CLng(Text1.Text)
If Err <> 0 Then N = 2
If N < 2 Then N = 2

End Sub
Private Sub Text2_Change()
'Update value of Inc from Text2 text whenever it changes

On Error Resume Next
Inc = CLng(Text2.Text)
If Err <> 0 Then Inc = 1
If Inc <= 0 Then Inc = 1

End Sub
Private Sub Command1_Click()
'Execute function whenever Execute button is clicked

Dim x As Variant
On Error GoTo Handle_Error
'Initialize ProgressBar
ProgressBar1.Min = 1
ProgressBar1.Max = N
Text3.Text = ""
'Iterate N times and call back at Inc intervals
Call aClass.iterate(1, x, CDbl(N), CDbl(Inc))
Text3.Text = Format(x)

10-25

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Exit Sub
Handle_Error:

MsgBox (Err.Description)
End Sub
Private Sub aClass_progress(ByVal i As Variant)
'Event handler. Called each time the iterate function
'calls the progress function. Progress bar is updated
'with the value passed in, causing the control to advance.

ProgressBar1.Value = i
End Sub

10-26

Passing Arguments

Passing Arguments

In this section...

“Overview” on page 10-27

“Creating and Using a varargin Array in Microsoft® Visual Basic®

Programs” on page 10-27

“Creating and Using varargout in Microsoft® Visual Basic® Programs” on
page 10-28

Overview
When it encapsulates MATLAB® functions, the MATLAB® Builder™ NE
product adds the MATLAB function arguments to the argument list of the
class methods it creates. Thus, if a MATLAB function uses varargin and/or
varargout, the builder adds these arguments to the argument list of the
class method. They are added at the end of the argument list for input and
output arguments.

You can pass multiple arguments as a varargin array by creating a Variant
array, assigning each element of the array to the respective input argument.

See “Producing a COM Class” on page 12-23 for more information about
mapping of input and output arguments.

Creating and Using a varargin Array in Microsoft®
Visual Basic® Programs
The following example creates a varargin array to call a method
encapsulating a MATLAB function of the form y = foo(varargin).

The MWUtil class included in the MWComUtil utility library provides the
MWPack helper function to create varargin parameters.

Function foo(x1 As Variant, x2 As Variant, x3 As Variant, _
x4 As Variant, x5 As Variant) As Variant

Dim aClass As Object
Dim v(1 To 5) As Variant
Dim y As Variant

10-27

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

On Error Goto Handle_Error
v(1) = x1
v(2) = x2
v(3) = x3
v(4) = x4
v(5) = x5
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(1,y,v)
foo = y
Exit Function

Handle_Error:
foo = Err.Description

End Function

Creating and Using varargout in Microsoft® Visual
Basic® Programs
The next example processes a varargout argument as three separate
arguments. This function uses the MWUnpack function in the utility library.

The MATLAB function used is varargout = foo(x1,x2).

Sub foo(Xout1 As Variant, Xout2 As Variant, Xout3 As Variant, _
Xin1 As Variant, Xin2 As Variant)

Dim aClass As Object
Dim aUtil As Object
Dim v As Variant

On Error Goto Handle_Error
aUtil = CreateObject("MWComUtil.MWUtil")
aClass = CreateObject("mycomponent.myclass.1_0")
Call aClass.foo(3,v,Xin1,Xin2)
Call aUtil.MWUnpack(v,0,True,Xout1,Xout2,Xout3)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

10-28

Using Flags to Control Array Formatting and Data Conversion

Using Flags to Control Array Formatting and Data
Conversion

In this section...

“Overview ” on page 10-29

“Array Formatting Flags” on page 10-30

“Using Array Formatting Flags” on page 10-30

“Using Data Conversion Flags” on page 10-33

“Special Flags for Some Microsoft® Visual Basic® Types” on page 10-35

Overview
Generally, you should write your application code so that it matches
the arguments (input and output) of the MATLAB® functions that are
encapsulated in the COM objects that you are using. The mapping of
arguments from the MATLAB product to Microsoft® Visual Basic® is fully
described in MATLAB® to COM VARIANT Conversion Rules on page 12-11
and COM VARIANT to MATLAB® Conversion Rules on page 12-15.

In some cases it is not possible to match the two kinds of arguments exactly;
for example, when existing MATLAB code is used in conjunction with a third
party product such as Microsoft® Excel®. For these and other cases, the
builder supports formatting and conversion flags that control how array data
is formatted in both directions (input and output).

When it creates a component, the builder includes a component property
named MWFlags. The MWFlags property is readable and writable.

The MWFlags property consists of two sets of constants: array formatting flags
and data conversion flags. Array formatting flags affect the transformation of
arrays, whereas data conversion flags deal with type conversions of individual
array elements.

10-29

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Array Formatting Flags
The following tables provide a quick overview of how to use array formatting
flags to specify conversions for input and output arguments.

Name of Flag Possible Values of Flag Results of Conversion

mwArrayFormatMatrix
(default)

MATLAB matrix from general
Variant data.

mwArrayFormatCell MATLAB cell array from general
Variant data.

InputArrayFormat

Array data from an Excel® range is coded in Visual Basic® as an
array of Variant. Since MATLAB functions typically have matrix
arguments, using the default setting makes sense when you are
dealing with data from Excel.

mwArrayFormatAsIs Array of Variant

Converts arrays according to the default conversion rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 12-11.

mwArrayFormatMatrix A Variant containing an array of
a basic type.

OutputArrayFormat

mwArrayFormatCell MATLAB cell array from general
Variant data.

AutoResizeOutput When this flag is set, the target range automatically resizes to fit
the resulting array. If this flag is not set, the target range must
be at least as large as the output array or the data is truncated.
Use this flag for Excel Range objects passed directly as output
parameters.

TransposeOutput Transposes all array output. Use this flag when dealing with an
encapsulated M-function whose output is a one-dimensional array.
By default, the MATLAB product handles one-dimensional arrays
as 1-by-n matrices (that is, as row vectors). Change this default
with the TransposeOutput flag if you prefer column output.

Using Array Formatting Flags
To use the following example, make sure that you reference the MWComUtil
library in the current project:

10-30

Using Flags to Control Array Formatting and Data Conversion

1 Click Tools > References.

2 Click MWComUtil 7.5 Type Library.

Consider the following Microsoft Visual Basic function definition for foo.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1(1 To 2, 1 To 2), var2 As Variant
Dim x(1 To 2, 1 To 2) As Double
Dim y1,y2 As Variant

On Error Goto Handle_Error
var1(1,1) = 11#
var1(1,2) = 12#
var1(2,1) = 21#
var1(2,2) = 22#
x(1,1) = 11
x(1,2) = 12
x(2,1) = 21
x(2,2) = 22
var2 = x
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y1,var1)
Call aClass.foo(1,y2,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The example has two Variant variables, var1 and var2. These two variables
contain the same numerical data, but internally they are structured
differently; one is a 2-by-2 array of variant and the other is a 1-by-1 array of
variant. The variables are described in the following table:

var1 var2

Numerical data
11 12
21 22

11 12
21 22

10-31

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

var1 var2

Internal structure in
Visual Basic

2-by-2 array of Variant.
Each variant is a
1-by-1 array of Double.

1-by-1 Variant, which
contains a 2-by-2 array
of Double

Result of conversion by
the builder according
to the default data
conversion rules

2-by-2 cell array. Each
element is a 1-by-1
array of double.

2-by-2 matrix. Each
element is a Double.

The InputArrayFormat flag controls how the arrays are handled. In this
example, the value for the InputArrayFormat flag is the default, which is
mwArrayFormatMatrix. The default causes an array to be converted to a
matrix. See the table for the result of the conversion of var2.

To specify a cell array (instead of a matrix) as input to the function call, set
the InputArrayFormat flag to mwArrayFormatCell instead of the default.
Do this in this example by adding the following line after creating the class
and before the method call:

aClass .MWFlags.ArrayFormatFlags.InputArrayFormat =
mwArrayFormatCell

Setting the flag to mwArrayFormatCell causes all array input to the
encapsulated M-function to be converted to cell arrays.

Modifying Output Format
Similarly, you can manipulate the format of output arguments using the
OutputArrayFormat flag. You can also modify array output with the
AutoResizeOutput and TransposeOutput flags.

Output Format in VBScript
When calling a COM object in VBScript you need to make sure that you set
MWFlags for the COM object to specify cell array for the output. Also, you
must use an enumeration (the enumeration value for a cell array is 2) to make
the specification (rather than specifying mwArrayFormatCell).

The following sample code shows how to accomplish this:

10-32

Using Flags to Control Array Formatting and Data Conversion

obj.MWFlags.ArrayFormatFlags.OutputArrayFormat = 2

Using Data Conversion Flags
Two data conversion flags, CoerceNumericToType and InputDateFormat,
govern how numeric and date types are converted from Visual Basic to
MATLAB.

To use the following example, make sure that you reference the MWComUtil
library in the current project:

1 Click Tools > References.

2 Click MWComUtil 7.5 Type Library.

This example converts var1 of type Variant/Integer to an int16 and var2 of
type Variant/Double to a double.

Sub foo()
Dim aClass As mycomponent.myclass
Dim var1, var2 As Variant
Dim y As Variant

On Error Goto Handle_Error
var1 = 1
var2 = 2#
Set aClass = New mycomponent.myclass
Call aClass.foo(1,y,var1,var2)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

If the original MATLAB function expects doubles for both arguments, this
code might cause an error. One solution is to assign a double to var1, but
this may not be possible or desirable. As an alternative, you can set the
CoerceNumericToType flag to mwTypeDouble, causing the data converter to
convert all numeric input to double. To do this, place the following line after
creating the class and before calling the methods:

aClass .MWFlags.DataConversionFlags.CoerceNumericToType =

10-33

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

mwTypeDouble

The next example shows how to use the InputDateFormat flag, which controls
how the Visual Basic Date type is converted. The example sends the current
date and time as an input argument and converts it to a string.

Sub foo()
Dim aClass As mycomponent.myclass
Dim today As Date
Dim y As Variant

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
aClass. MWFlags.DataConversionFlags.InputDateFormat =

mwDateFormatString
Call aClass.foo(1,y,today)
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

The next example uses an MWArg object to modify the conversion flags for
one argument in a method call. In this case the first output argument (y1)
is coerced to a Date, and the second output argument (y2) uses the current
default conversion flags supplied by aClass.

Sub foo(y1 As Variant, y2 As Variant)
Dim aClass As mycomponent.myclass
Dim ytemp As MWArg

Dim today As Date

On Error Goto Handle_Error
today = Now
Set aClass = New mycomponent.myclass
Set ytemp = New MWArg
ytemp.MWFlags.DataConversionFlags.OutputAsDate = True
Call aClass.foo(2, ytemp, y2, today)
y1 = ytemp
Exit Sub

10-34

Using Flags to Control Array Formatting and Data Conversion

Handle_Error:
MsgBox(Err.Description)

End Sub

Special Flags for Some Microsoft® Visual Basic® Types
In general, you use the MWFlags class property to change specified behaviors
of the conversion from Microsoft Visual Basic Variant types to MATLAB
types, and vice versa. There are some exceptions — some types generated by
the builder have their own MWFlags property. When you use these particular
types, the method call behaves according to the settings of the type and not
of the class containing the method being called. The exceptions are for the
following types generated by the builder:

• MWStruct

• MWField

• MWComplex

• MWSparse

• MWArg

Note The MWArg class is supplied specifically for the case when a particular
argument needs different settings from the default class properties.

10-35

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using MATLAB® Global Variables in Microsoft® Visual
Basic®

Class properties allow an object to retain an internal state between method
calls.

Global variables are variables that are declared in the MATLAB® product with
the global keyword. The builder automatically converts all global variables
shared by the M-files that make up a class to properties on that class.

Properties are particularly useful when you have a large array containing
values that do not change often, but you need to operate on it frequently. In
this case, you can set the array once as a class property and operate on it
repeatedly without incurring the overhead of passing (and converting) the
data for passing to each method every time it is called.

The following example shows how to use a class property in a matrix
factorization class. The example develops a class that performs Cholesky, LU,
and QR factorizations on the same matrix. It stores the input matrix (coded
as A in MATLAB) as a class property so that it does not need to be passed
to the factorization routines.

Consider these three M-files.

Cholesky.m

function [L] = Cholesky()
global A;
if (isempty(A))

L = [];
return;

end
L = chol(A);

LUDecomp.m

function [L,U] = LUDecomp()
global A;
if (isempty(A))

L = [];

10-36

Using MATLAB® Global Variables in Microsoft® Visual Basic®

U = [];
return;

end
[L,U] = lu(A);

QRDecomp.m

function [Q,R] = QRDecomp()
global A;
if (isempty(A))

Q = [];
R = [];
return;

end
[Q,R] = qr(A);

These three files share a common global variable A. Each function performs a
matrix factorization on A and returns the results.

To build the class:

1 Create a new MATLAB® Builder™ NE project named mymatrix with a
version of 1.0.

2 Add a single class called myfactor to the component.

3 Add the above three M-files to the class.

4 Build the component.

To test your application, make sure that you reference the library generated
by the builder in the current Visual Basic® project:

1 Click Project > References in the Visual Basic main menu.

2 Click mymatrix 1.0 Type Library.

Use the following Visual Basic subroutine to test the myfactor class.

Sub TestFactor

10-37

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Sub TestFactor()
Dim x(1 To 2, 1 To 2) As Double
Dim C As Variant, L As Variant, U As Variant, _
Q As Variant, R As Variant
Dim factor As myfactor

On Error GoTo Handle_Error
Set factor = New myfactor
x(1, 1) = 2#
x(1, 2) = -1#
x(2, 1) = -1#
x(2, 2) = 2#
factor.A = x
Call factor.cholesky(1, C)
Call factor.ludecomp(2, L, U)
Call factor.qrdecomp(2, Q, R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Run the subroutine, which does the following:

1 Creates an instance of the myfactor class

2 Assigns a double matrix to the property A

3 Calls the three factorization methods

10-38

Blocking Execution of a Console Application that Creates Figures

Blocking Execution of a Console Application that Creates
Figures

In this section...

“The MCRWaitForFigures Method” on page 10-39

“Using MCRWaitForFigures to Block Execution” on page 10-40

The MCRWaitForFigures Method
The MATLAB® Builder™ NE product adds a special MCRWaitForFigures
method to each class in the COM components that it creates.
MCRWaitForFigures takes no arguments. Your application can call
MCRWaitForFigures any time during execution.

The purpose of MCRWaitForFigures is to block execution of a calling program
as long as figures created in encapsulated M-code are displayed. Typically
you use MCRWaitForFigures when

• There are one or more figures open that were created by an instance of a
COM object created by the builder.

• The method that displays the graphics requires user input before
continuing.

• The method that calls the figures was called from main() in a console
program.

When MCRWaitForFigures is called, execution of the calling program is
blocked if any figures created by the calling object remain open.

Note Be careful when calling the MCRWaitForFigures method. Calling this
method from a Microsoft® Visual Basic® UI or from an interactive program
like Microsoft® Excel® can hang the application. This method should be called
only from console-based programs.

10-39

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Using MCRWaitForFigures to Block Execution
The following example illustrates using MCRWaitForFigures from a Microsoft®

Visual C++® console application. The example uses a COM object created by
the builder; the object encapsulates M-code that draws a simple plot.

1 Create a work directory for your source code. In this example, the directory
is D:\work\plotdemo.

2 Create the following m-file in this directory:

drawplot.m

function drawplot()
plot(1:10);

3 Use the builder to create a COM component with the following properties:

Component name plotdemo

Class name plotdemoclass

Version 1.0

Note Instead of using the Deployment Tool, you can create the component
by issuing the following command at the MATLAB® prompt:

mcc -d 'D:\work\plotdemo\src' -v -B

'ccom:plotdemo,plotdemoclass,1.0' 'D:\Work\plotdemo\drawplot.m'

4 Create a Visual C++® program in a file named runplot.cpp with the
following code:

// Include the following files generated by
// MATLAB Builder NE:
#include "src\plotdemo_idl.h"
#include "src\plotdemo_idl_i.c"

int main()

10-40

Blocking Execution of a Console Application that Creates Figures

{
// Initialize the COM library
HRESULT hr = CoInitialize(NULL);
// Create an instance of the COM object you created
Iplotdemoclass* pIplotdemoclass = NULL;
hr = CoCreateInstance(CLSID_plotdemoclass, NULL, _

CLSCTX_INPROC_SERVER, IID_Iplotdemoclass, _
(void **)&pIplotdemoclass);

// Call the drawplot method
hr = pIplotdemoclass->drawplot();
// Block execution until user dismisses the figure window
hr = pIplotdemoclass->MCRWaitForFigures();
// Uninitialize COM
CoUninitialize();
return 0;

}

5 In the MATLAB Command Window, build the application as follows:

mbuild runplot.cpp

When you run the application, the program displays a plot from 1 to 10 in a
MATLAB figure window. The application ends when you dismiss the figure.

Note To see what happens without the call to MCRWaitForFigures.
comment out the call, rebuild the application, and run it. In this case, the
figure is drawn and is immediately destroyed as the application exits.

10-41

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Obtaining Registry Information
When programming with COM components, you might need details about a
component. You can use componentinfo, which is a MATLAB® function, to
query the system registry for details about any installed MATLAB® Builder™
NE component.

This example queries the registry for a component named mycomponent and
a version of 1.0. This component has four methods: mysum, randvectors,
getdates, and myprimes; two properties: m and n; and one event: myevent.

Info = componentinfo('mycomponent', 1, 0)

Info =

Name: 'mycomponent'
TypeLib: 'mycomponent 1.0 Type Library'

LIBID: '{3A14AB34-44BE-11D5-B155-00D0B7BA7544}'
MajorRev: 1
MinorRev: 0
FileName: 'D:\Work\ mycomponent\distrib\mycomponent_1_0.dll'
Interfaces: [1x1 struct]
CoClasses: [1x1 struct]

Info.Interfaces

ans =

Name: 'Imyclass'
IID: '{3A14AB36-44BE-11D5-B155-00D0B7BA7544}'

Info.CoClasses

ans =

Name: 'myclass'
CLSID: '{3A14AB35-44BE-11D5-B155-00D0B7BA7544}'
ProgID: 'mycomponent.myclass.1_0'

VerIndProgID: 'mycomponent.myclass'
InprocServer32:'D:\Work\mycomponent\distrib\mycomponent_1_0.dll'

10-42

Obtaining Registry Information

Methods: [1x4 struct]
Properties: {'m', 'n'}

Events: [1x1 struct]

Info.CoClasses.Events.M

ans =

function myevent(x, y)

Info.CoClasses.Methods

ans =

1x4 struct array with fields:
IDL
M
C
VB

Info.CoClasses.Methods.M

ans =

function [y] = mysum(varargin)

ans =

function [varargout] = randvectors()

ans =

function [x] = getdates(n, inc)

ans =

function [p] = myprimes(n)

The returned structure contains fields corresponding to the most important
information from the registry and type library for the component.

10-43

10 Programming with COM Components Created by the MATLAB® Builder™ NE Product

Handling Errors During a Method Call
If your application generates an error while creating a class instance or
during a class method call, the current procedure creates an exception.

Microsoft® Visual Basic® provides an exception handling capability through
the On Error Goto <label> statement, in which the program execution
jumps to <label> when an error occurs. (<label> must be located in the
same procedure as the On Error Goto statement.) All errors in Visual Basic®

are handled this way, including errors within the MATLAB® code that you
have encapsulated into a COM object. An exception creates a Visual Basic
ErrObject object in the current context in a variable called Err.

See the Microsoft Visual Basic documentation for a detailed discussion on
Visual Basic Basic error handling.

10-44

11

Using COM Components
in Microsoft® Visual Basic®

Applications

Magic Square Example (p. 11-2) Demonstrates the creation of a COM
component from a simple MATLAB®

M-file

Creating an Excel® Add-In: Spectral
Analysis Example (p. 11-9)

Shows the creation of a
comprehensive Excel® add-in

Univariate Interpolation Example
(p. 11-23)

Uses Akima’s Univariate
Interpolation example available on
the MathWorks Web site

Matrix Calculator Example (p. 11-31) Creates a matrix calculator and
shows how to compile the MATLAB
functions into a COM component

Curve Fitting Example (p. 11-42) Demonstrates the optimal fitting of
a nonlinear function to a set of data

Bouncing Ball Simulation Example
(p. 11-50)

An adaptation of the ballode demo
provided with core MATLAB

11 Using COM Components in Microsoft® Visual Basic® Applications

Magic Square Example

In this section...

“Example Overview” on page 11-2

“Creating the M-File” on page 11-2

“Using the Deployment Tool to Create and Build the Project” on page 11-3

“Creating the Microsoft® Visual Basic® Project” on page 11-4

“Creating the User Interface” on page 11-4

“Creating the Executable in Microsoft® Visual Basic®” on page 11-7

“Testing the Application” on page 11-7

“Packaging the Component” on page 11-8

Example Overview
This example uses a simple M-file that takes a single input and creates
a magic square of that size. It then builds a COM component using this
M-file as a class method. Finally, the example shows the integration of this
component into a stand-alone Microsoft® Visual Basic® application. The
application accepts the magic square size as input and displays the matrix in
a ListView control box.

Note ListView is a Windows® Form control that displays a list of items with
icons. You can use a list view to create a user interface like the right pane
of Windows Explorer. See the MSDN Library for more information about
Windows Form controls.

Creating the M-File
To get started, create the M-file mymagic.m containing the following code:

function y = mymagic(x)
y = magic(x);

11-2

http://msdn.microsoft.com/library/default.asp?url=/library/en-us/vbcon/html/vboriWinFormsControls.asp

Magic Square Example

Using the Deployment Tool to Create and Build the
Project

1 If you have not already done so, execute the following command in the
MATLAB® product:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

2 Specify a COM component as follows:

a. While in MATLAB, issue the following command to open Deployment
Tool:

deploytool

b. Create a project with the following settings:

Setting Value

Project name magicdemo

Class name magicdemoclass

Project directory The name of your work directory followed by
the component name. In this example, that is
D:\Work\MagicSquareExample\magicdemo.

Show verbose
output

Selected

c. Locate your work directory and navigate to the MagicDemoComp
directory, which contains the M-file for the makesquare function. Add
the makesquare.m file to the project.

3 Build the component by clicking the Build icon in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for the
component are copied to two newly created directories, src and distrib,

11-3

11 Using COM Components in Microsoft® Visual Basic® Applications

in the magicdemo directory. A copy of the build log is placed in the src
directory.

Creating the Microsoft® Visual Basic® Project

Note This procedure assumes that you are using Microsoft Visual Basic 6.0.

1 Start Visual Basic®.

2 In the New Project dialog box, select Standard EXE as the project type
and click Open. This creates a new Visual Basic project with a blank form.

3 From the main menu, click Project > References to open the Project
References dialog box.

4 Select magicdemo 1.0 Type Library from the list of available components
and click OK.

5 Returning to the Visual Basic main menu, click Project > Components to
open the Components dialog box.

6 Select Microsoft Windows Common Controls 6.0 and click OK. You will
use the ListView control from this component library.

Creating the User Interface
After you create the project, add a series of controls to the blank form to create
a form with the following settings:

Control Type
Control
Name Properties Purpose

Frame Frame1 Caption = Magic Squares
Demo

Groups controls

Label Label1 Caption = Magic Square
Size

Labels the magic square edit
box.

11-4

Magic Square Example

Control Type
Control
Name Properties Purpose

TextBox edtSize Accepts input of magic square
size.

CommandButton btnCreate Caption = Create When pressed, creates a new
magic square with current size.

ListView lstMagic GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays the magic square.

When the form and controls are complete, add the following code to the form.
This code references the control and variable names listed above. If you have
given different names for any of the controls or any variable, change this code
to reflect those differences.

Private Size As Double 'Holds current matrix size

Private theMagic As magicdemo.magicdemoclass 'magic object instance

Private Sub Form_Load()

'This function is called when the form is loaded.

'Creates a new magic class instance.

On Error GoTo Handle_Error

Set theMagic = New magicdemo.magicdemoclass

Size = 0

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCreate_Click()

'This function is called when the Create button is pressed.

'Calls the mymagic method, and displays the magic square.

Dim y As Variant

If Size <= 0 Or theMagic Is Nothing Then Exit Sub

On Error GoTo Handle_Error

Call theMagic.mymagic(1, y, Size)

Call ShowMatrix(y)

11-5

11 Using COM Components in Microsoft® Visual Basic® Applications

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub edtSize_Change()

'This function is called when ever the contents of the

'Text box change. Sets the current value of Size.

On Error Resume Next

Size = CDbl(edtSize.Text)

If Err <> 0 Then

Size = 0

End If

End Sub

Private Sub ShowMatrix(y As Variant)

'This function populates the ListView with the contents of

'y. y is assumed to contain a 2D array.

Dim n As Long

Dim i As Long

Dim j As Long

Dim nLen As Long

Dim Item As ListItem

On Error GoTo Handle_Error

'Get array size

If IsArray(y) Then

n = UBound(y, 1)

Else

n = 1

End If

'Set up Column headers

nLen = lstMagic.Width / 5

Call lstMagic.ListItems.Clear

Call lstMagic.ColumnHeaders.Clear

Call lstMagic.ColumnHeaders.Add(, , "", nLen, lvwColumnLeft)

For i = 1 To n

Call lstMagic.ColumnHeaders.Add(, , _

"Column " & Format(i), nLen, lvwColumnLeft)

Next

11-6

Magic Square Example

'Add array contents

If IsArray(y) Then

For i = 1 To n

Set Item = lstMagic.ListItems.Add(, , "Row " & Format(i))

For j = 1 To n

Call Item.ListSubItems.Add(, , Format(y(i, j)))

Next

Next

Else

Set Item = lstMagic.ListItems.Add(, , "Row 1")

Call Item.ListSubItems.Add(, , Format(y))

End If

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Creating the Executable in Microsoft® Visual Basic®

After the code is complete, create the stand-alone executable magic.exe:

1 Reopen the project by clicking File > Save Project from the main menu.
Accept the default name for the main form and enter magic.vbp for the
project name.

2 Return to the File menu. Click File > Make magic.exe to create the
finished product.

Testing the Application
You can run the magic.exe executable as you would any other program.
When the main dialog box opens, enter a positive number in the input box
and click Create. A magic square of the input size appears as shown:

11-7

11 Using COM Components in Microsoft® Visual Basic® Applications

The ListView control automatically implements scrolling if the magic square
is larger than 4-by-4.

Packaging the Component
As a final step, package the magicdemo component and all supporting libraries
into a self-extracting executable. Then anyone can install the package on
another computer, in particular a computer without the MATLAB product
installed, and use the magicdemo application.

To package the component, follow these steps:

1 Return to the Deployment Tool dialog box and open the magicdemo project.
If necessary, type deploytool in the Command Window.

2 Click the Package button in the toolbar.

Deployment Tool creates the magicdemo_pkg.exe self-extracting
executable.

To install the component onto another computer, copy the magicdemo_pkg.exe
package to that machine, run magicdemo_pkg.exe from a command prompt,
and follow the instructions.

11-8

Creating an Excel® Add-In: Spectral Analysis Example

Creating an Excel® Add-In: Spectral Analysis Example

In this section...

“Example Overview” on page 11-9

“Building the Component” on page 11-9

“Integrating the Component with VBA” on page 11-11

“Creating the Microsoft® Visual Basic® Form” on page 11-13

“Adding the Spectral Analysis Menu Item to Microsoft® Excel®” on page
11-18

“Saving the Add-In” on page 11-19

“Testing The Add-in” on page 11-20

“Packaging and Distributing the Add-In” on page 11-22

Example Overview
This example shows how to create a comprehensive Microsoft® Excel® add-in
to perform spectral analysis. It requires knowledge of Microsoft® Visual Basic®

forms and controls, as well as Excel® workbook events. See the Visual Basic®

documentation included with Excelfor a complete discussion of these topics.

The example creates an Excel add-in that performs a fast Fourier transform
(FFT) on an input data set located in a designated worksheet range. The
function returns the FFT results, an array of frequency points, and the power
spectral density of the input data. It places these results into ranges you
indicate in the current worksheet. You can also optionally plot the power
spectral density.

You develop the function so that you can invoke it from the Excel Tools menu
and can select input and output ranges through a graphical user interface
(GUI).

Building the Component
Your component will have one class with the following two methods:

11-9

11 Using COM Components in Microsoft® Visual Basic® Applications

• The computefft method computes the FFT and power spectral density of
the input data and computes a vector of frequency points based on the
length of the data entered and the sampling interval.

• The plotfft method performs the same operations as computefft, but
also plots the input data and the power spectral density in a MATLAB®

figure window.

The MATLAB code for these two methods resides in two M-files, computefft.m
and plotfft.m, as shown:

computefft.m:
function [fftdata, freq, powerspect] = computefft(data, interval)

if (isempty(data))
fftdata = [];
freq = [];
powerspect = [];
return;

end
if (interval <= 0)

error('Sampling interval must be greater then zero');
return;

end
fftdata = fft(data);
freq = (0:length(fftdata)-1)/(length(fftdata)*interval);
powerspect = abs(fftdata)/(sqrt(length(fftdata)));

plotfft.m:

function [fftdata, freq, powerspect] = plotfft(data, interval)
[fftdata, freq, powerspect] = computefft(data, interval);
len = length(fftdata);
if (len <= 0)

return;
end
t = 0:interval:(len-1)*interval;
subplot(2,1,1), plot(t, data)
xlabel('Time'), grid on
title('Time domain signal')
subplot(2,1,2), plot(freq(1:len/2), powerspect(1:len/2))

11-10

Creating an Excel® Add-In: Spectral Analysis Example

xlabel('Frequency (Hz)'), grid on
title('Power spectral density')

To build the component, follow these steps:

1 If you have not already done so, execute the following command in the
MATLAB product:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

2 Start deploytool.

3 Create a new project with these settings:

• Project name: Fourier

• Class name: Fourier

4 Add the computefft.m and plotfft.m M-files to the project.

5 Save the project.

6 Click the Build icon in the toolbar to create the component.

Integrating the Component with VBA
The next task is to implement the necessary VBA code to integrate the
component into Excel.

Follow these steps to open Excel and select the libraries you need to develop
the add-in:

1 Start Excel.

2 From the Excel main menu, click Tools > Macro > Visual Basic Editor
to open the Visual Basic Editor.

3 Click Tools > References to display the Project References dialog box.

11-11

11 Using COM Components in Microsoft® Visual Basic® Applications

4 Select Fourier 1.0 Type Library and MWComUtil 7.5 Type Library.

Creating the Main VBA Code Module
The add-in requires some initialization code and some global variables to
hold the application’s state between function invocations. To achieve this,
implement a Visual Basic code module to manage these tasks, as follows:

1 Right-click VBAProject in the Project window and click Insert > Module.

A new module appears under Modules in the VBA Project.

2 In the module’s property page, set the Name property to FourierMain.

3 Enter the following code in the FourierMain module:

' FourierMain - Main module stores global state of controls
' and provides initialization code
'
'Global instance of Fourier object
Public theFourier As Fourier.Fourier
'Global instance of MWComplex to accept FFT
Public theFFTData As MWComplex
'Input data range
Public InputData As Range
'Sampling interval
Public Interval As Double
'Output frequency data range
Public Frequency As Range
'Output power spectral density range
Public PowerSpect As Range
'Holds the state of plot flag
Public bPlot As Boolean
'Global instance of MWUtil object
Public theUtil as MWUtil
'Module-is-initialized flag
Public bInitialized As Boolean
Private Sub LoadFourier()
'Initializes globals and Loads the Spectral Analysis form

Dim MainForm As frmFourier
On Error GoTo Handle_Error

11-12

Creating an Excel® Add-In: Spectral Analysis Example

Call InitApp
Set MainForm = New frmFourier
Call MainForm.Show
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Private Sub InitApp()
'Initializes classes and libraries. Executes once
'for a given session of Excel

If bInitialized Then Exit Sub
On Error GoTo Handle_Error
If theFourier Is Nothing Then

Set theFourier = New Fourier.Fourier
End If
If theFFTData Is Nothing Then

Set theFFTData = New MWComplex
End If
bInitialized = True
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Creating the Microsoft® Visual Basic® Form
The next task is to develop a user interface for your add-in using the Microsoft
Visual Basic editor. Follow these steps to create a new user form and populate
it with the necessary controls:

1 Right-click VBAProject in the Project window and click
Insert > UserForm.

A new form appears under Forms in the VBA Project.

2 In the form’s property page, set the Name property to frmFourier and the
Caption property to Spectral Analysis.

3 Add a series of controls to the blank form to complete the dialog box, as
summarized in the following table:

11-13

11 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Frame Frame1 Caption = Input
Data

Groups all input controls.

Label Label1 Caption = Input
Data:

Labels the RefEdit for
input data.

RefEdit refedtInput Selects range for input
data.

Label Label2 Caption =
Sampling
Interval

Labels the text box for
sampling interval.

TextBox edtSample Specifies the sampling
interval.

CheckBox chkPlot Caption = Plot
time domain
Signal and
Power Spectral
Density

Plots input data and
power spectral density.

Frame Frame2 Caption = Output
Data

Groups all output
controls.

Label Label3 Caption =
Frequency:

Labels the RefEdit for
frequency output.

RefEdit refedtFreq Selects output range for
frequency points.

Label Label4 Caption = FFT -
Real Part:

Labels the RefEdit for
real part of FFT.

RefEdit refedtReal Selects output range for
real part of FFT of input
data.

Label Label5 Caption = FFT -
Imaginary Part:

Labels the RefEdit for
imaginary part of FFT.

RefEdit refedtImag Selects output range for
imaginary part of FFT of
input data.

11-14

Creating an Excel® Add-In: Spectral Analysis Example

Control Type Control Name Properties Purpose

Label Label6 Caption =
Power Spectral
Density

Labels the RefEdit for
power spectral density.

RefEdit refedtPowSpect Selects output range for
power spectral density of
input data.

CommandButton btnOK Caption = OK

Default = True

Executes the function and
dismisses the dialog

CommandButton btnCancel Caption = Cancel

Cancel = True

Dismisses the dialog box
without executing the
function.

The following figure shows the resulting layout.

4 When the form and controls are complete, right-click anywhere in the
form and click View Code. The following code listing shows the code to
implement. Note that this code references the control and variable names

11-15

11 Using COM Components in Microsoft® Visual Basic® Applications

listed in the previous table. If you have renamed any of the controls or any
global variable, change this code to reflect those differences.

'

'frmFourier Event handlers

'

Private Sub UserForm_Activate()

'UserForm Activate event handler. This function gets called before

'showing the form, and initializes all controls with values stored

'in global variables.

On Error GoTo Handle_Error

If theFourier Is Nothing Or theFFTData Is Nothing Then Exit Sub

'Initialize controls with current state

If Not InputData Is Nothing Then

refedtInput.Text = InputData.Address

End If

edtSample.Text = Format(Interval)

If Not Frequency Is Nothing Then

refedtFreq.Text = Frequency.Address

End If

If Not IsEmpty (theFFTData.Real) Then

If IsObject(theFFTData.Real) And TypeOf theFFTData.Real Is Range Then

refedtReal.Text = theFFTData.Real.Address

End If

End If

If Not IsEmpty (theFFTData.Imag) Then

If IsObject(theFFTData.Imag) And TypeOf theFFTData.Imag Is Range Then

refedtImag.Text = theFFTData.Imag.Address

End If

End If

If Not PowerSpect Is Nothing Then

refedtPowSpect.Text = PowerSpect.Address

End If

chkPlot.Value = bPlot

Exit Sub

Handle_Error:

MsgBox (Err.Description)

End Sub

Private Sub btnCancel_Click()

11-16

Creating an Excel® Add-In: Spectral Analysis Example

'Cancel button click event handler. Exits form without computing fft

'or updating variables.

Unload Me

End Sub

Private Sub btnOK_Click()

'OK button click event handler. Updates state of all variables from controls

'and executes the computefft or plotfft method.

Dim R As Range

If theFourier Is Nothing Or theFFTData Is Nothing Then GoTo Exit_Form

On Error Resume Next

'Process inputs

Set R = Range(refedtInput.Text)

If Err <> 0 Then

MsgBox ("Invalid range entered for Input Data")

Exit Sub

End If

Set InputData = R

Interval = CDbl(edtSample.Text)

If Err <> 0 Or Interval <= 0 Then

MsgBox ("Sampling interval must be greater than zero")

Exit Sub

End If

'Process Outputs

Set R = Range(refedtFreq.Text)

If Err = 0 Then

Set Frequency = R

End If

Set R = Range(refedtReal.Text)

If Err = 0 Then

theFFTData.Real = R

End If

Set R = Range(refedtImag.Text)

If Err = 0 Then

theFFTData.Imag = R

End If

Set R = Range(refedtPowSpect.Text)

If Err = 0 Then

Set PowerSpect = R

End If

11-17

11 Using COM Components in Microsoft® Visual Basic® Applications

bPlot = chkPlot.Value

'Compute the fft and optionally plot power spectral density

If bPlot Then

Call theFourier.plotfft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

Else

Call theFourier.computefft(3, theFFTData, Frequency, PowerSpect,_

InputData, Interval)

End If

GoTo Exit_Form

Handle_Error:

MsgBox (Err.Description)

Exit_Form:

Unload Me

End Sub

Adding the Spectral Analysis Menu Item to Microsoft®
Excel®

The last task in the integration process is to add a menu item to Microsoft
Excel so that you can invoke the tool from the Excel Tools menu. To do this
you add event handlers for the workbook’s AddinInstall and AddinUninstall
events; these are events that install and uninstall menu items. The menu
item calls the LoadFourier function in the FourierMain module.

Follow these steps to implement the menu item:

1 Right-click ThisWorkbook in the Visual Basic project window and click
View Code.

2 Add the following code to the ThisWorkbook object:

Private Sub Workbook_AddinInstall()

'Called when Addin is installed

Call AddFourierMenuItem

End Sub

Private Sub Workbook_AddinUninstall()

'Called when Addin is uninstalled

Call RemoveFourierMenuItem

End Sub

11-18

Creating an Excel® Add-In: Spectral Analysis Example

Private Sub AddFourierMenuItem()

Dim ToolsMenu As CommandBarPopup

Dim NewMenuItem As CommandBarButton

'Remove if already exists

Call RemoveFourierMenuItem

'Find Tools menu

Set ToolsMenu = Application.CommandBars(1).FindControl(ID:=30007)

If ToolsMenu Is Nothing Then Exit Sub

'Add Spectral Analysis menu item

Set NewMenuItem = ToolsMenu.Controls.Add(Type:=msoControlButton)

NewMenuItem.Caption = "Spectral Analysis..."

NewMenuItem.OnAction = "LoadFourier"

End Sub

Private Sub RemoveFourierMenuItem()

Dim CmdBar As CommandBar

Dim Ctrl As CommandBarControl

On Error Resume Next

'Find tools menu and remove Spectral Analysis menu item

Set CmdBar = Application.CommandBars(1)

Set Ctrl = CmdBar.FindControl(ID:=30007)

Call Ctrl.Controls("Spectral Analysis...").Delete

End Sub

Saving the Add-In
Name the add-in Spectral Analysis and follow these steps to save it:

1 From the Excel main menu, click File > Properties.

The Workbook Properties dialog box appears.

2 Click the Summary tab and enter Spectral Analysis as the workbook
title.

3 Click OK to save the edits.

4 Click File > Save As from the Excel main menu.

11-19

11 Using COM Components in Microsoft® Visual Basic® Applications

5 Click Microsoft Excel Add-In (*.xla) as the file type.

6 Enter Fourier.xla as the file name.

7 Click Save to save the add-in.

Testing The Add-in
Before distributing the add-in, test it with a sample problem. Spectral
analysis is commonly used to find the frequency components of a signal
buried in a noisy time domain signal. In this example you will create a data
representation of a signal containing two distinct components and add to it a
random component. This data along with the output will be stored in columns
of an Excel worksheet, and you will plot the time-domain signal along with
the power spectral density.

Follow the steps outlined below to create the test problem:

1 Start a new session of Excel with a blank workbook.

2 Click Tools > Add-Ins from the main menu.

3 When the Add-Ins dialog box comes up, click Browse.

4 Browse to the Fourier.xla file and click OK.

5 The Spectral Analysis add-in appears in the available Add-Ins list and
is selected.

6 Click OK to load the add-in.

This add-in installs a menu item under the Excel Tools menu. You can
display the Spectral Analysis GUI by clicking Tools > Spectral Analysis.

Before invoking the add-in, create some data, in this case a signal with
components at 15 and 40 Hz. Sample the signal for 10 seconds at a sampling
rate of 0.01 second. Put the time points into column A and the signal points
into column B.

11-20

Creating an Excel® Add-In: Spectral Analysis Example

Creating the Data
Follow these steps to create the data:

1 Enter 0 for cell A1 in the current worksheet.

2 Click on cell A2 and type the formula = A1 + 0.01.

3 Drag the formula in cell A2 down the column to cell A1001.

This procedure fills the range A1:A1001 with the interval 0 to 10
incremented by 0.01.

4 Click on cell B1 and type the formula SIN(2*PI()*15*A1) +
SIN(2*PI()*40*A1) + RAND().

5 Repeat the drag procedure to copy this formula to all cells in the range
B1:B1001.

Running the Test
Using the column of data (column B), test the add-in as follows:

1 Click Tools > Spectral Analysis from the main menu.

2 Click Input Data.

3 Click the B1:B1001 range from the worksheet, or type this address into
Input Data.

4 Click Sampling Interval box and type 0.01.

5 Click Plot time domain signal and power spectral density.

6 Enter C1:C1001 for frequency output. Similarly, enter D1:D1001, E1:E1001,
and F1:F1001 for the FFT real and imaginary parts, and spectral density.

7 Click OK to run the analysis.

The following figure shows the output.

11-21

11 Using COM Components in Microsoft® Visual Basic® Applications

The power spectral density reveals the two signals at 15 and 40 Hz.

Packaging and Distributing the Add-In
As a final step, package the add-in, the COM component, and all supporting
libraries into a self-extracting executable. This package can be installed onto
other computers that need to use the Spectral Analysis add-in.

To package and distribute the add-in, follow these steps:

1 Return to the Deployment Tool and open the Fourier project. (If necessary
run the deploytool command in the MATLAB product to reopen the
Deployment Tool dialog box.)

2 Click the Package button in the toolbar.

The builder creates the Fourier_pkg.exe self-extracting executable.

3 To install this add-in onto another computer, copy the Fourier_pkg.exe
package to that machine, run it from a command prompt, and follow the
instructions.

11-22

Univariate Interpolation Example

Univariate Interpolation Example

In this section...

“Example Overview” on page 11-23

“Using the Deployment Tool to Create and Build the Component” on page
11-23

“Using the Component in Microsoft® Visual Basic®” on page 11-24

“Creating the Microsoft® Visual Basic® Form” on page 11-25

Example Overview
This example is created using the Akima’s Univariate Interpolation example
posted by N. Shyamsundar on the MathWorks Web site. You can download the
original M-file from http://www.mathworks.com/matlabcentral/. Search
for COM Builder Example: Univariate Interpolation.

This example shows you how to create the COM component using the
MATLAB® Builder™ NE product and how to use this COM component in
external Microsoft® Visual Basic® code independent of the MATLAB® product.

Using the Deployment Tool to Create and Build the
Component
Build the component as follows:

1 At the MATLAB command prompt, change directories to your work
directory.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

3 Open the Deployment Tool dialog box.

11-23

http://www.mathworks.com/matlabcentral/

11 Using COM Components in Microsoft® Visual Basic® Applications

deploytool

4 Create a project with the following settings:

Setting Value

Project name UnivariateInterp.

Class name Interp

Project directory The name of your work directory followed by the
Project name.

Show verbose
output

Selected

5 Locate your work directory and navigate to the UnivariateInterp
directory, and add the M-file to the project.

6 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for the
component are copied to two newly created directories, src and distrib,
in the UnivariateInterp directory. A copy of the build log is placed in
the src directory.

Using the Component in Microsoft® Visual Basic®

You can call the component from any application that supports COM.

Follow these steps to create a Microsoft Visual Basic project and add
references to the necessary libraries.

1 Start Visual Basic®.

2 Create a new Standard EXE project.

3 Click Project > References.

4 Ensure that the following libraries appear:

11-24

Univariate Interpolation Example

UnivariateInterp 1.0 Type Library

MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 12-4
for information on this process.

Creating the Microsoft® Visual Basic® Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. Your application receives data from the user through this form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component. Alternatively, press Ctrl+T.

Ensure that Microsoft Windows Common Controls 6.0 is selected.

You will use the ListView control from this component library.

2 Add a series of controls to the blank form to create an interface using the
properties shown in the following table:

Control Type Control Name Properties Purpose

Form frmInterp Caption = Univariate
Interpolation

Container for all
components

Label lblDataCount Caption = Number of Data
Points

Labels the text box
txtNumDataPts.

TextBox txtNumDataPts Text = Number of original data
points

Label lblInterp Caption = Number of
Interpolation Points

Labels the text box
txtInterp

TextBox txtInterp Text = Number of points over
which to interpolate

11-25

11 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Label lblPlot Caption = Would you like to
plot the data?

Labels the check box
chkPlot

CheckBox chkPlot When selected, a message
is sent to the COM
component to plot the
data

ListView lstXData Name = lstXData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

X-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view

ListView lstYData Name = lstYData

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Y-data values. Set the
view type to lvwReport
to allow the user to add
data to the list view

ListView lstInterp Name = lstInterp

GridLines = True

LabelEdit = lvwAutomatic

View = lvwReport

Interpolation points

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes the function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Dismisses dialog box
without executing
function

3 When the design is complete, save the project by clicking File > Save.

4 When prompted for the project name, type Interp.vbp, and for the form,
type frmInterp.frm.

5 To write the underlying code, right-click frmInterp in the Project window
and click View Code.

11-26

Univariate Interpolation Example

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theInterp As UnivariateInterp.Interp 'Variable to hold the COM object

Private Sub cmdCancel_Click()

' Unload the form if the user hits the cancel button.

Unload Me

End Sub

Private Sub Form_Initialize()

On Error GoTo Handle_Error

' Create the COM object

' If there is an error, handle it accordingly.

Set theInterp = New UnivariateInterp.Interp

' Set the flags such that the input is always passed as double data.

theInterp.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub Form_Load()

' Set the run time properties of the components

Dim Len1 As Long ' Variable to hold length parameter of the list box

Dim Len2 As Long ' Variable to hold the length parameter of the list box

Len2 = lstInterp.Width / 2

Len1 = (lstInterp.Width - Len2) - 150

' Add the column headers to the list boxes

Call lstXData.ColumnHeaders.Add(, , "XData", Len2)

Call lstYData.ColumnHeaders.Add(, , "YData", Len2)

Call lstInterp.ColumnHeaders.Add(, , "Interp Data", Len1)

Call lstInterp.ColumnHeaders.Add(, , "Interp YData", Len2)

' Enable the grid lines

lstXData.GridLines = True

lstYData.GridLines = True

11-27

11 Using COM Components in Microsoft® Visual Basic® Applications

lstInterp.GridLines = True

lstInterp.FullRowSelect = True

' Set the Tab indices for each of the components

txtNumDataPts.TabIndex = 1

txtInterp.TabIndex = 2

lstXData.TabIndex = 3

lstYData.TabIndex = 4

lstInterp.TabIndex = 5

cmdEvaluate.TabIndex = 6

cmdCancel.TabIndex = 7

End Sub

Private Sub txtInterp_Change()

' If user changes number of interpolation points, set the interpolation

' point listbox to accomodate the new number of points.

Dim loopCount As Integer ' loop count

Dim numData As Integer

On Error GoTo Handle_Error

' First clear the listbox

Call lstInterp.ListItems.Clear

' Create space for the requested number of interpolation points

If Not (txtInterp.Text = "") Then

numData = CDbl(txtInterp.Text)

For loopCount = 1 To numData

Call lstInterp.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Invalid value for number of Data points")

lstInterp.ListItems.Clear

txtInterp.Text = ""

End Sub

Private Sub txtNumDataPts_Change()

' If the user changes the number of data points, set the XData and YData

' listboxes to accomodate the new number of points.

Dim loopCount As Integer ' loop count

11-28

Univariate Interpolation Example

Dim numData As Integer

On Error GoTo Handle_Error

' First clear both the listbox (XData and YData)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

' Create space for the requested number of data points (XData and YData).

If Not (txtNumDataPts.Text = "") Then

numData = CDbl(txtNumDataPts.Text)

For loopCount = 1 To numData

Call lstXData.ListItems.Add(loopCount, , "")

Call lstYData.ListItems.Add(loopCount, , "")

Next

End If

Exit Sub

Handle_Error:

' Reset the list to 0 elements and also the text box to an empty string.

MsgBox ("Error: " & Err.des)

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

txtNumDataPts.Text = ""

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim XDataInterp As Variant ' Result variable object

Dim loopCount As Integer ' A variable used for loop count

Dim item As ListItem ' Temporary variable to store data in list box

Dim XData() As Double ' X value of data points, passed to COM object

Dim YData() As Double ' Y value of data points, passed to the COM object

Dim XInterp() As Double ' X value of interpolation points, passed to COM

' object

Dim Yi As Variant ' Y value of interpolation points, obtained from COM

' object as ouput value

' Set dimensions of the input and ouput data based on user inputs (number

' of data points and number of interpolation points).

ReDim XData(1 To lstXData.ListItems.Count)

ReDim YData(1 To lstYData.ListItems.Count)

ReDim XInterp(1 To lstInterp.ListItems.Count)

ReDim Yi(1 To lstInterp.ListItems.Count)

11-29

11 Using COM Components in Microsoft® Visual Basic® Applications

' Collect the Data and set the XData, YData, XInterp matrices accordingly

For loopCount = 1 To lstXData.ListItems.Count

XData(loopCount) = CDbl(lstXData.ListItems.item(loopCount))

YData(loopCount) = CDbl(lstYData.ListItems.item(loopCount))

Next

For loopCount = 1 To lstInterp.ListItems.Count

XInterp(loopCount) = CDbl(lstInterp.ListItems.item(loopCount))

Yi(loopCount) = -1

Next

' Check if the object was created properly.

' If not, go to the error handling routine.

If theInterp Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error GoTo Handle_Error

'Compute Curve Fitting Data

Call theInterp.UnivariateInterpolation(1,Yi,XData,YData,XInterp,_

chkPlot.Value)

'Call lstInterp.ListItems.Clear

For loopCount = LBound(Yi, 2) To UBound(Yi, 2)

Set item = lstInterp.ListItems(loopCount)

Call item.ListSubItems.Add(, , Format(Yi(1, loopCount), "##.###"))

Next

Call lstInterp.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

Exit_Form:

End Sub

11-30

Matrix Calculator Example

Matrix Calculator Example

In this section...

“Example Overview” on page 11-31

“Building the Component” on page 11-31

“Using the Component in Microsoft® Visual Basic®” on page 11-33

“Creating the Microsoft® Visual Basic® Form” on page 11-33

Example Overview
This example shows how to encapsulate MATLAB® utilities that perform
basic matrix arithmetic. It includes M-code that performs matrix addition,
subtraction, multiplication, division and left division and a function to
evaluate the eigenvalues for a matrix. The example shows how to create the
COM component using the MATLAB® Builder™ NE product and how to use
the COM component in a Microsoft® Visual Basic® application independent of
the MATLAB product.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to your work directory. To get
the download, search the File Exchange at matlabcentral for MatrixArith.

Building the Component
To build the component:

1 At the MATLAB command prompt, change directories to the MatrixMath
directory in your work directory.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

11-31

http://www.mathworks.com/matlabcentral/

11 Using COM Components in Microsoft® Visual Basic® Applications

3 Enter the command deploytool to open the Deployment Tool dialog box.

4 Create a project with the following settings:

Setting Value

Project name matrixMath

Class name matrixMathclass

Project directory The name of your work directory followed by the
Project name.

Show verbose
output

Selected

5 Locate your work directory and navigate to the matrixMath directory,
which contains the M-files needed for the component.

6 Add the following files to the project:

• addMatrices.m

• divideMatrices.m

• eigenValue.m

• leftDivideMatrices.m

• multiplyMatrices.m

• subtractMatrices.m

7 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for the
component are copied to two newly created directories, src and distrib,
in the matrixMath directory. A copy of the build log is placed in the src
directory.

11-32

Matrix Calculator Example

Using the Component in Microsoft® Visual Basic®

You can call the component from any application that supports COM. Follow
these steps to create a Microsoft Visual Basic project and add references to
the necessary libraries.

1 Start Visual Basic®.

2 Create a new Standard EXE project.

3 Click Project > References.

4 Ensure that the following libraries are in the project:

MatrixMath 1.0 Type Library

MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 12-4
for information on this.

Creating the Microsoft® Visual Basic® Form
The next step creates a front end or a Microsoft Visual Basic form for the
application. End users enter data in this form.

Follow these steps to create a new user form and populate it with the
necessary controls:

1 Click Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 are selected.
You will use the Spreadsheet control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in
the next figure.

11-33

11 Using COM Components in Microsoft® Visual Basic® Applications

4 One of the main components used in the Visual Basic form is a Spreadsheet
component. For each Spreadsheet component, set properties as follows:

Property Original Value New Value

DisplayColumnHeaders True False

DisplayHorizontalScrollBar True False

DisplayRowHeaders True False

DisplayTitleBar True False

DisplayToolBar True False

DisplayVerticalScrollBar True False

MaximumWidth 80% 100%

ViewableRange 1:65536 A1:E5

11-34

Matrix Calculator Example

A consolidated list of components added to the form and the properties
modified is as follows:

Control Type Control Name Properties Purpose

Form frmMatrixMath Caption = Matrix
Laboratory

Container for all
components

Frame frmInput Caption = Input Data
Points

Groups all input controls

Frame frmOutput Caption = Output
Coefficients

Groups all output
controls

Spreadsheet sheetMat1 Refer to previous table. Accepts input matrix 1
from user

Spreadsheet sheetMat2 Refer to previous table. Accepts input matrix 2
from user

Spreadsheet sheetMat3 Refer to previous table. Accepts input matrix 3
from user

Spreadsheet sheetResultMat Refer to previous table. Displays result matrix

Label lblAdd Caption = Add Labels Add option
button

OptionButton optOperation Index = 0 Option button to perform
addition

Label lblSub Caption = Subtract Labels Subtract option
button

OptionButton optOperation Index = 1 Option button to perform
subtraction

Label lblMult Caption = Multiply Labels Multiply option
button

OptionButton optOperation Index = 2 Option button to perform
multiplication

Label lblDivide Caption = Divide Labels Divide Option
button

OptionButton optOperation Index = 3 Option button to perform
division

11-35

11 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Label lblLeftDivide Caption = Left Divide Labels Left Divide
Option button

OptionButton optOperation Index = 4 Option button to perform
left division

Label lblEig Caption = Eigenvalue Labels Eigenvalue
Option button

OptionButton optOperation Index = 5 Option button to
calculate Eigenvalue
of first matrix

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function

CommandButton cmdCancel Caption = Cancel

Cancel = True

Dismisses dialog box
without executing
function

5 When the design is complete, save the project by clicking File > Save.
When prompted for the project name, type MatrixMathVB.vbp, and for
the form, type frmMatrixMath.frm.

6 To write the underlying code, right-click frmMatrixMath in the Project
window, and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theMatCal As matrixMath.matrixMath

Private Sub Form_Initialize()

' Create an instance of the COM object and set the MWArray flags.

' If this fails, exit from the form.

On Error GoTo exit_form

' Create the object.

Set theMatCal = New matrixMath.matrixMath

11-36

Matrix Calculator Example

' Force the input to be of type double.

theMatCal.MWFlags.DataConversionFlags.CoerceNumericToType = mwTypeDouble

' Set the AutoResizeOutput flag to True, so that you do not have to specify

' the size of the output variable as returned by the COM object.

theMatCal.MWFlags.ArrayFormatFlags.AutoResizeOutput = True

' Get the results in a Matrix format.

theMatCal.MWFlags.ArrayFormatFlags.OutputArrayFormat =_

mwArrayFormatMatrix

Exit Sub

exit_form:

' Error handling routine. Since no object is created, display error '

'message and unload the form.

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub Form_Load()

' Set the run time properties for all the components.

frmInputs.TabIndex = 1

sheetMat1.AutoFit = True

' Set the tab order for each component and the viewable range.

' If you need a larger viewable range, you might want to turn the

' horizontal and vertical scroll bars to TRUE.

sheetMat1.TabStop = True

sheetMat1.TabIndex = 1

sheetMat1.Width = 4875

sheetMat1.ViewableRange = "A1:E5"

sheetMat2.TabStop = True

sheetMat2.TabIndex = 2

sheetMat2.Width = 4875

sheetMat2.ViewableRange = "A1:E5"

sheetMat3.TabStop = True

sheetMat3.TabIndex = 3

sheetMat3.Width = 4875

sheetMat3.ViewableRange = "A1:E5"

sheetResultMatTabStop = False

11-37

11 Using COM Components in Microsoft® Visual Basic® Applications

sheetResultMatTabIndex = 1

sheetResultMatWidth = 4875

sheetResultMat.ViewableRange = "A1:E5"

frmOutput.TabIndex = 2

optOperation(0).TabIndex = 3

optOperation(1).TabIndex = 4

optOperation(2).TabIndex = 5

optOperation(3).TabIndex = 6

optOperation(4).TabIndex = 7

optOperation(5).TabIndex = 8

End Sub

Private Sub cmdCancel_Click()

' When the user clicks on the Cancel button, unload the form.

Unload Me

End Sub

Private Sub cmdEval_Click()

' Declare the variables to be used in the code

Dim data1 As Range

' This is the temporary variable that holds the value entered in

' the spreadsheet.

'Dim finalRows As Double ' The number of

'Dim finalCols As Double

' Dim tempVal As Double

Dim matArray1 As Variant ' Variable to hold the value of input Matrix 1,

' passed to the COM object directly.

Dim matArray2 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim matArray3 As Variant ' Variable to hold the value of input Matrix 1,

' passed via varArg variable.

Dim varArg(2) As Variant ' Variable to hold the value of input Matrix 1,,

' contains the two optional matrices and is passed to the COM object.

'Dim mat1() As Double

'Dim mat1Dimension2() As Variant

11-38

Matrix Calculator Example

Dim tempRange As Range ' Take the range value as obtained from the

' user input into a temporary range.

Dim resultMat As Variant ' Variable to take the result matrix in

Dim msg As String ' The message thrown by the COM object is taken

' in this variable.

Call sheetResultMat.ActiveSheet.UsedRange.Clear

' Check if the COM object was created properly.

' If not exit

If theMatCal Is Nothing Then GoTo exit_form

' Get the used range of data from the sheetMat1, which will then be

' converted into matArray1.

Set data1 = sheetMat1.ActiveSheet.UsedRange

'finalRows = data1.Rows.Count

'finalCols = data1.Columns.Count

'ReDim mat1(1 To data1.Rows.Count)

'ReDim mat1Dimension2(1 To data1.Columns.Count)

ReDim matArray1(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

' Extract the values and populate input matrix 1.

Set tempRange = data1.Cells(RowCount, ColCount)

'tempVal = tempRange.Value

'matArray1(RowCount, ColCount) = tempVal

matArray1(RowCount, ColCount) = tempRange.Value

'Set mat1(ColCount) = tempRange.Value

Next ColCount

' mat1Dimension2(RowCount) = mat1()

Next RowCount

Set data1 = sheetMat2.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray2(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

11-39

11 Using COM Components in Microsoft® Visual Basic® Applications

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray2(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(0) = matArray2

End If

Set data1 = sheetMat3.ActiveSheet.UsedRange

If (Not (data1.Value = "")) Then

ReDim matArray3(1 To data1.Rows.Count, 1 To data1.Columns.Count) As_

Double

For RowCount = 1 To data1.Rows.Count

For ColCount = 1 To data1.Columns.Count

Set tempRange = data1.Cells(RowCount, ColCount)

tempVal = tempRange.Value

matArray3(RowCount, ColCount) = tempVal

Next ColCount

Next RowCount

finalCols = data1.Columns.Count

varArg(1) = matArray3

End If

' Based on the operation selected by the user, call the appropriate method

' from the COM object.

If optOperation.Item(0).Value = True Then ' Add

Call theMatCal.addMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(1).Value = True Then ' Subtract

Call theMatCal.subtractMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(2).Value = True Then ' Multiply

Call theMatCal.multiplyMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(3).Value = True Then ' Divide

Call theMatCal.divideMatrices(2, resultMat, msg, matArray1, varArg)

ElseIf optOperation.Item(4).Value = True Then ' Left Divide

Call theMatCal.leftDivideMatrices(2, resultMat, msg, matArray1,_

varArg)

ElseIf optOperation.Item(5).Value = True Then ' Eigen Value

Call theMatCal.eigenValue(2, resultMat, msg, matArray1)

11-40

Matrix Calculator Example

End If

' If the result matrix is a scalar double, display it in the first cell.

If (VarType(resultMat) = vbDouble) Then

Set tempRange = sheetResultMat.Cells(1, 1)

tempRange.Value = resultMat

' If the result matrix is not a scalar double, loop through it to display

' all the elements.

Else

For RowCount = 1 To UBound(resultMat, 1)

For ColCount = 1 To UBound(resultMat, 2)

Set tempRange = sheetResultMat.Cells(RowCount, ColCount)

tempRange.Value = resultMat(RowCount, ColCount)

Next ColCount

Next RowCount

End If

Exit Sub

exit_form:

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

' If the user changes the operation, clear the result matrix.

Private Sub optOperation_Click(Index As Integer)

Call sheetResultMat.ActiveSheet.Cells.Clear

End Sub

11-41

11 Using COM Components in Microsoft® Visual Basic® Applications

Curve Fitting Example

In this section...

“Example Overview” on page 11-42

“Building the Component” on page 11-42

“Building the Project” on page 11-43

“Using the Component in Microsoft® Visual Basic®” on page 11-43

“Creating the Microsoft® Visual Basic® Form” on page 11-44

Example Overview
This example is a demonstration of the optimal fitting of a nonlinear
function to a set of data, using the curve-fitting demo fitfun provided with
the MATLAB® product. It uses fminsearch, an implementation of the
Nelder-Mead simplex (direct search) algorithm, to minimize a nonlinear
function of several variables.

This example shows you how to create the COM component using the
MATLAB® Builder™ NE product and how to use this COM component in a
Microsoft® Visual Basic® application independent of MATLAB.

Note This example assumes that you have downloaded the M-code from
http://www.mathworks.com/matlabcentral/ to the matlabroot directory.
To get the download, search the File Exchange at matlabcentral for COM
Builder Demo: Curve Fitting.

Building the Component
To build the component:

1 At the MATLAB command prompt, change directories to matlabroot.

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

11-42

http://www.mathworks.com/matlabcentral/

Curve Fitting Example

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

3 Enter the deploytool command to open the Deployment Tool dialog box.

4 Create a project with the following settings:

Project name CurveFit

Class name CurveFitclass

Building the Project
To build the project:

1 In the Deployment Tool dialog box, add fitfun.m and fitdemo.m from the
directory matlabroot/CurveFitDemo.

2 Click the Build button in the toolbar.

The component is created and placed in the distrib directory within the
Classdirectory.

Using the Component in Microsoft® Visual Basic®

You can call the component from any application that supports COM.

Follow these steps to create a Microsoft Visual Basic project and add
references to the necessary libraries.

1 Start Visual Basic®.

2 Create a new Standard EXE project.

3 Click Project > References.

4 Ensure that the following libraries are included in the project:

CurveFit 1.0 Type Library

MWComUtil 7.5 Type Library

11-43

11 Using COM Components in Microsoft® Visual Basic® Applications

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page 12-4
for information.

Creating the Microsoft® Visual Basic® Form
The next step is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data on the form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component. Alternatively, press Ctrl+T.

2 Make sure that Microsoft Windows Common Controls 6.0 are selected.
You will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface as shown in
the next figure.

The following table shows the components and properties that are required:

Control Type Control Name Properties Purpose

Form frmCurveFit Caption = Curve
Fitting

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input
controls.

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

11-44

Curve Fitting Example

Control Type Control Name Properties Purpose

Label lblNumDataPoints Caption = Number of
Data Points

Labels the text
box that takes the
number of data
points the user
wants to enter.

TextBox txtNumOfDatPoints Text = Holds number of
data points the
user wants to
enter. Sets size
of list box added
later.

ListView lstXData Name = lstXData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

X-data values.
Set the view type
to lvwReport to
enable user to add
data to the list
view.

ListView lxtYData Name = lstYData

GridLines = TrueLabel

Edit = lvwAutomatic

View = lvwReport

Y-data values.

Label lblCoeff1* Caption = Co-efficient
1

Labels text box for
coefficient 1.

Label lblCoeff2 Caption = Co-efficient
2

Labels text box for
coefficient 2.

TextBox txtCoeff1 Text = Displays value of
coefficient 1 as
calculated by the
COM module.

TextBox txtCoeff2 Text = Displays value of
coefficient 2 as
calculated by the
COM module.

11-45

11 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

Label lblLambda1* Caption = Lambda 1 Labels text box for
lambda 1.

Label lblLambda2 Caption = Lambda 2 Labels text box for
lambda 2.

TextBox txtLambda1 Text = Displays value
of lambda 1 as
calculated by the
COM module.

TextBox txtLambda2 Text = Displays value
of lambda 2 as
calculated by the
COM module.

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Dismisses dialog
box without
executing
function.

4 When the design is complete, save the project by clicking File > Save.

5 When prompted for the project name, type CurveFitExample.vbp, and for
the form, type frmCurveFit.frm.

6 In the Project window, right-click frmCurveFit and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Dim theFit As CurveFit.CurveFit ' Variable to hold the COM Object

' This routine is exectued when the form is initialized.

Private Sub Form_Initialize()

11-46

Curve Fitting Example

' If the initialize routine fails, handle it accordingly.

On Error GoTo Exit_Form

' Create the COM object

Set theFit = New CurveFit.CurveFit

' Set the flags such that the output is transposed.

theFit.MWFlags.ArrayFormatFlags.TransposeOutput = True

Exit Sub

Exit_Form:

' Display the error message and Unload the form if object

creation failed

MsgBox ("Error: " & Err.Description)

MsgBox ("Error: Could not create the COM object")

Unload Me

End Sub

Private Sub Form_Load()

On Error GoTo Exit_Form

' Set the runtime properties of the components

' Set the headers of the column

Call lstXData.ColumnHeaders.Add(, , "X Data")

Call lstYData.ColumnHeaders.Add(, , "Y Data")

' Make labeledit property automatic so that you edit the label.

lstXData.LabelEdit = lvwAutomatic

lstYData.LabelEdit = lvwAutomatic

' Make the grid lines for the listbox visible.

lstXData.GridLines = True

lstYData.GridLines = True

Exit Sub

Exit_Form:

' Error handling routine. Since cannot load the form,

' display the error message and unload the program.

MsgBox ("Error: Could not load the form")

MsgBox ("Error: " & Err.Description)

Unload Me

End Sub

Private Sub cmdCancel_Click()

11-47

11 Using COM Components in Microsoft® Visual Basic® Applications

' If the user hits the cancel button, unload the form.

Unload Me

End Sub

Private Sub txtNumOfDataPoints_Change()

' If user changes number of data points, clear XData and YData

' listboxes. Provide enough spaces for given number of points.

Dim loopCount As Integer

Call lstXData.ListItems.Clear

Call lstYData.ListItems.Clear

If (txtNumOfDataPoints.Text = "") Then

Exit Sub

End If

For loopCount = 1 To CInt(txtNumOfDataPoints.Text)

lstXData.ListItems.Add (loopCount)

lstYData.ListItems.Add (loopCount)

Next loopCount

End Sub

Private Sub cmdEvaluate_Click()

Dim loopCount As Integer ' loop counter

Dim numOfData As Integer ' variable to hold the number of data

' points the user has entered

Dim XData() As Double ' Column Vector for XData, will be passed

' as input to the COM method.

Dim YData() As Double ' Column Vector for YData, will be passed

' as input to the COM method.

Dim Coeff As Variant ' Coefficient values will be returned by

' the COM method in this variable.

Dim Lambda As Variant ' Lambda values will be returned by the

' COM method in this variable.

' If there is an error, handle it accordingly.

On Error GoTo Handle_Error

If txtNumOfDataPoints.Text = "" Then

Exit Sub

End If

' Get the number of data points.

numOfData = CInt(txtNumOfDataPoints.Text)

ReDim XData(1 To numOfData) As Double

11-48

Curve Fitting Example

ReDim YData(1 To numOfData) As Double

' Read the input data into respective double arrays.

For loopCount = 1 To numOfData

XData(loopCount) = lstXData.ListItems.Item(loopCount)

YData(loopCount) = lstYData.ListItems.Item(loopCount)

Next loopCount

' Call the COM method

Call theFit.fitdemo(2, Coeff, Lambda, XData, YData)

' Display values of coefficients returned by the COM method.

txtCoeff1.Text = CStr(Format(Coeff(1, 1), "##.####"))

txtCoeff2.Text = CStr(Format(Coeff(1, 2), "##.####"))

txtLambda1.Text = CStr(Format(Lambda(1, 1), "##.####"))

txtLambda2.Text = CStr(Format(Lambda(1, 2), "##.####"))

Exit Sub

Handle_Error:

' Error handling routine

MsgBox ("Error: " & Err.Description)

End Sub

11-49

11 Using COM Components in Microsoft® Visual Basic® Applications

Bouncing Ball Simulation Example

In this section...

“Example Overview” on page 11-50

“Building the Component” on page 11-50

“Using the Component in Microsoft® Visual Basic®” on page 11-51

“Creating the Microsoft® Visual Basic® Form” on page 11-52

Example Overview
This example is adapted from the ballode demo provided with the MATLAB®

product. It demonstrates repeated event location, where the conditions are
changed after each terminal event.

This demo computes 10 bounces with calls to ode23, which is a MATLAB
function. A user-specified damping factor after each bounce attenuates the
speed of the ball. The trajectory is plotted using the output function odeplot.
In addition to the damping factor, the user can also provide the initial velocity,
the maximum number of bounce to track, and the maximum time until demo
is completed.

This example shows you how to create the COM component using the
MATLAB® Builder™ NE product and how to use this COM component in a
Visual Basic® application independent of MATLAB.

Note This example assumes that you have downloaded the M-code to the
matlabroot directory.

Building the Component
To build the component:

1 At the MATLAB command prompt change directories to
matlabroot/BallODE.

11-50

Bouncing Ball Simulation Example

2 If you have not already done so, execute the following command in
MATLAB:

mbuild -setup

Be sure to choose a supported compiler. See “Compiler Requirements” on
page 7-2.

3 Enter the command deploytool to open the Deployment Tool dialog box.

4 Use the Deployment Tool to create a project with the following settings:

Setting Value

Project name bouncingBall

Class name bouncingBallclass

Project directory The name of your work directory followed by the
component name.

Show verbose
output

Selected

5 Locate your work directory, navigate to matlabroot/BallODE, and add
ballode.m to the project.

6 Build the component by clicking the Build button in the Deployment Tool
toolbar.

The build process begins, and a log of the build appears in the Output
pane of the Deployment Tool dialog box. The files that are needed for the
component are copied to two newly created directories, src and distrib,
in the bouncingBall directory. A copy of the build log is placed in the src
directory.

Using the Component in Microsoft® Visual Basic®

You can call the component from any application that supports COM.

Follow these steps to create a Microsoft® Visual Basic® project and add
references to the necessary libraries.

11-51

11 Using COM Components in Microsoft® Visual Basic® Applications

1 Start Visual Basic.

2 Create a new Standard EXE project.

3 Click Project > References.

4 Select the following libraries:

• bouncingBall 1.0 Type Library

(If you named your class something other than bouncingBall or gave
a different version number, click and use the appropriate component
and corresponding type library.)

• MWComUtil 7.5 Type Library

Note If you do not see these libraries, you may not have registered the
libraries using mwregsvr. Refer to “Component Registration” on page
12-4 for information on this.

Creating the Microsoft® Visual Basic® Form
The next task is to create a front end or a Microsoft Visual Basic form for the
application. End users enter data with this form.

Follow these steps to create a new user form and populate it with the
necessary controls.

1 Click Projects > Component.

Alternatively, press Ctrl+T.

2 Check that Microsoft Windows Common Controls 6.0 is selected. You
will use the ListView control from this component library.

3 Add a series of controls to the blank form to create an interface with the
properties listed in the following table:

11-52

Bouncing Ball Simulation Example

Control Type Control Name Properties Purpose

Form frmBallOde Caption = Bouncing Ball
ODE

Container for all
components.

Frame frmInput Name = frmInput*

Caption = Input Data
Points

Groups all input controls.

Frame frmOutput Name = frmOutput*

Caption = Output
Coefficients

Groups all output
controls.

Label lblInitVal Caption = Initial
Velocity

Labels the text box
txtInitVal.

TextBox txtInitVal Text = Holds initial velocity by
which ball is thrown into
the air.

Label lblDamp Caption = Damping
Factor

Labels the text box
txtDamp.

TextBox txtDamp Text = Holds damping factor for
the bounce, that is, the
factor by which the speed
of the ball is reduced
after it bounces.

Label lblIter Caption = Number of
Bounces

Labels the text box
txtIter.

TextBox txtIter Text = Holds number of
iterations or bounces
to track.

Label lblFinalTime Caption = Maximum Time Labels the text box
txtFinalTime.

TextBox txtFinalTime Text = Stores time until demo is
completed.

11-53

11 Using COM Components in Microsoft® Visual Basic® Applications

Control Type Control Name Properties Purpose

ListView lstBounce Name = lstBounce

GridLines = True

LabelEdit = lvwManual

View = lvwReport

Displays time stamp
when ball bounces off the
ground.

CommandButton cmdEvaluate Caption = Evaluate

Default = True

Executes function.

CommandButton cmdCancel Caption = Cancel

Cancel = True

Dismisses dialog box
without executing
function.

4 When the design is complete, save the project by clicking File > Save.
When prompted for the project name, type BallOde.vbp, and for the form,
type frmBallOde.frm.

5 In the Project dialog box right-click frmBallOde and click View Code.

The following code listing shows the code to implement. Note that this
code references the control and variable names listed above. If you have
given a different name to any of the controls or any global variable, change
this code to reflect the differences.

Private theBall As Variant ' Variable to hold the COM object.

Private Sub cmdCancel_Click()

' If the user presses the Cancel button, unload the form.

Unload Me

End Sub

Private Sub Form_Initialize()

Dim Len1 As Long ' Used to set length of columns for list box.

Dim Len2 As Long ' Used to set length of columns for list box.

On Error GoTo Handle_Error

' Set length of the each column based on length of the listbox

' such that the two columns span the maximum area without

' creating a horizontal scroll bar.

Len2 = lstBounce.Width / 2

11-54

Bouncing Ball Simulation Example

Len1 = (lstBounce.Width - Len2) - 300

' Add column headers to each column in the list box.

Call lstBounce.ColumnHeaders.Add(, , "Bounce", Len1)

Call lstBounce.ColumnHeaders.Add(, , "Time", Len2)

' Set tab indices for each component.

txtInitVel.TabIndex = 1

txtDamp.TabIndex = 2

txtIter.TabIndex = 3

txtFinalTime.TabIndex = 4

cmdEvaluate.TabIndex = 5

cmdCancel.TabIndex = 6

lstBounce.TabStop = False

' Create the COM object

' If there is an error, handle it accordingly.

Set theBall = CreateObject("bouncingBall.bouncingBall.1_0")

Exit Sub

Handle_Error:

' Error handling code

MsgBox ("Error " & Err.Description)

End Sub

Private Sub cmdEvaluate_Click()

' Dim R As Range

Dim zeroTime As Variant ' Result variable object.

Dim loopCount As Integer

Dim item As ListItem

' Check if the object was created properly.

' If not, go to the error handling routine.

If theBall Is Nothing Then GoTo Exit_Form

' If there is an error, continue with the code.

On Error Resume Next

' Process inputs

' If the user does not provide the values for input parameters,

' use the default values.

If txtDamp.Text = Empty Then

11-55

11 Using COM Components in Microsoft® Visual Basic® Applications

txtDamp.Text = 0.9

End If

If txtInitVel.Text = Empty Then

txtInitVel.Text = 20

End If

If txtIter.Text = Empty Then

txtIter.Text = 15

End If

If txtFinalTime.Text = Empty Then

txtFinalTime.Text = 20

End If

'Compute Bouncing ball data

Call theBall.ballode(1, zeroTime, CDbl(txtIter.Text),_

CDbl(txtDamp.Text), CDbl(txtFinalTime.Text),_

CDbl(txtInitVel.Text))

' Display the output values (time stamp when ball bounces on

' the ground).

Call lstBounce.ListItems.Clear

For loopCount = LBound(zeroTime, 1) To UBound(zeroTime, 1)

Set item = lstBounce.ListItems.Add(, , Format(loopCount))

Call item.ListSubItems.Add(, , Format(zeroTime(loopCount,_

1), "##.###"))

Next

Call lstBounce.Refresh

GoTo Exit_Form

Handle_Error:

' Error handling routine

MsgBox (Err.Description)

Exit_Form:

End Sub

11-56

12

How the MATLAB®

Builder™ NE Product
Creates COM Components

Overview of Internal Processes
(p. 12-2)

Describes the steps in the build
process

Component Registration (p. 12-4) Describes the registration process
for COM components created by the
MATLAB® Builder™ NE product.

Data Conversion (p. 12-8) Converting between MATLAB® and
COM variants.

Calling Conventions (p. 12-23) Describes the calling conventions
for COM components created by the
MATLAB Builder NE

product

12 How the MATLAB® Builder™ NE Product Creates COM Components

Overview of Internal Processes

In this section...

“How Is a MATLAB® Builder™ NE Component Created?” on page 12-2

“Code Generation” on page 12-2

“Create Interface Definitions” on page 12-3

“C++ Compilation” on page 12-3

“Linking and Resource Binding” on page 12-3

“Registration of the DLL” on page 12-3

How Is a MATLAB® Builder™ NE Component Created?
The process of creating a MATLAB® Builder™ NE component is completely
automatic from a user point of view. You specify a list of M-files to process
and a few additional pieces of information, such as the component name, the
class names, and the version number.

Code Generation
The first step in the build process generates all source code and other
supporting files needed to create the component. It also creates the main
source file (mycomponent_dll.cpp) containing the implementation of each
exported function of the DLL. The compiler additionally produces an Interface
Description Language (IDL) file (mycomponent_idl.idl), containing the
specifications for the component’s type library, interface, and class, with
associated GUIDs. (GUID is an acronym for Globally Unique Identifier, a
128-bit integer guaranteed always to be unique.)

Created next are the C++ class definition and implementation files
(myclass_com.hpp and myclass_com.cpp). In addition to these source
files, the compiler generates a DLL exports file (mycomponent.def), a
resource script (mycomponent.rc), and a Component Technology File
(mycomponent.ctf). See the MATLAB® Compiler™ documentation for a
discussion of ctf files.

12-2

Overview of Internal Processes

Create Interface Definitions
The second step of the build process invokes the IDL compiler on the IDL file
generated in step 1 (mycomponent_idl.idl), creating the interface header
file (mycomponent_idl.h), the interface GUID file (mycomponent_idl_i.c),
and the component type library file (mycomponent_idl.tlb). The interface
header file contains type definitions and function declarations based on the
interface definition in the IDL file. The interface GUID file contains the
definitions of the GUIDs from all interfaces in the IDL file. The component
type library file contains a binary representation of all types and objects
exposed by the component.

C++ Compilation
The third step compiles all C/C++ source files generated in steps 1 and
2 into object code. One additional file containing a set of C++ template
classes (mclcomclass.h) is included at this point. This file contains template
implementations of all necessary COM base classes, as well as error handling
and registration code.

Linking and Resource Binding
The fourth step produces the finished DLL for the component. This step
invokes the linker on the object files generated in step 3 and the necessary
MATLAB® libraries to produce a DLL component (mycomponent_1_0.dll).
The resource compiler is then invoked on the DLL, along with the resource
script generated in step 1, to bind the type library file generated in step 2
into the completed DLL.

Registration of the DLL
The final build step registers the DLL on the system, as described in
“Component Registration” on page 12-4.

12-3

12 How the MATLAB® Builder™ NE Product Creates COM Components

Component Registration

In this section...

“Self-Registering Components” on page 12-4

“Globally Unique Identifier (GUID)” on page 12-5

“Versioning” on page 12-6

When the MATLAB® Builder™ NE product creates a component, it
automatically generates a binary file called a type library. As a final step of
the build, this file is bound with the resulting DLL as a resource.

Self-Registering Components
MATLAB Builder NE COM components are all self-registering. A
self-registering component contains all the necessary code to add or remove a
full description of itself to or from the system registry. The mwregsvr utility,
distributed with the MCR, registers self-registering DLLs. For example, to
register a component called mycomponent_1_0.dll, issue this command at
the DOS command prompt.

mwregsvr mycomponent_1_0.dll

When mwregsvr completes the registration process, it displays a message
indicating success or failure. Similarly, the command

mwregsvr /u mycomponent_1_0.dll

unregisters the component.

A component installed onto a particular machine must be registered with
mwregsvr. If you move a component into a different directory on the same
machine, you must repeat the registration process. When deleting a
component from a specific machine, first unregister it to ensure that the
registry does not retain erroneous information.

12-4

Component Registration

Note The mwregsvr utility invokes a process that is similar to regsvr32.exe,
except that mwregsvr does not require interaction with a user at the console.
The regsvr32.exe process belongs to the Windows® OS and is used to register
dynamic-link libraries and Microsoft® ActiveX® controls in the registry. This
program is important for the stable and secure running of your computer and
should not be terminated. You must specify the full path of the component
when calling mwregsvr, or make the call from the directory in which the
component resides. You can use regsvr32.exe as an alternative to mwregsvr
to register your library.

Globally Unique Identifier (GUID)
Information is stored in the registry as keys with one or more associated
named values. The keys themselves have values of primarily two types:
readable strings and GUIDs. (GUID is an acronym for Globally Unique
Identifier, a 128-bit integer guaranteed always to be unique.)

The builder automatically generates GUIDs for COM classes, interfaces, and
type libraries that are defined within a component at build time, and codes
these keys into the component’s self-registration code.

The interface to the system registry is directory based. COM-related
information is stored under a top-level key called HKEY_CLASSES_ROOT. Under
HKEY_CLASSES_ROOT are several other keys under which the builder writes
component information.

See the following table for a list of the keys and their definitions.

Key Definition

HKEY_CLASSES_ROOT\CLSID Information about COM classes on the
system. Each component creates a new key
under HKEY_CLASSES_ROOT\CLSID for each
of its COM classes. The key created has a
value of the GUID that has been assigned
the class and contains several subkeys with
information about the class.

12-5

12 How the MATLAB® Builder™ NE Product Creates COM Components

Key Definition

HKEY_CLASSES_ROOT\Interface Information about COM interfaces on the
system. Each component creates a new key
under HKEY_CLASSES_ROOT\Interface for
each interface it defines. This key has the
value of the GUID assigned to the interface
and contains subkeys with information
about the interface.

HKEY_CLASSES_ROOT\TypeLib Information about type libraries on the
system. Each component creates a key for
its type library with the value of the GUID
assigned to it. Under this key a new key is
created for each version of the type library.
Therefore, new versions of type libraries
with the same name reuse the original
GUID but create a new subkey for the new
version.

HKEY_CLASSES_ROOT\<ProgID>,
HKEY_CLASSES_ROOT\<VerIndProgID>

These two keys are created for the
component’s Program ID and Version
Independent Program ID. These keys are
constructed from strings of the following
forms:
component-name.class-name
component-name.class-name
version-number.
These keys are useful for creating a class
instance from the component and class
names instead of the GUIDs.

Versioning
MATLAB Builder NE components support a simple versioning mechanism
designed to make building and deploying multiple versions of the same
component easy to implement. The version number of a component appears
as part of the DLL name, as well as part of the version-dependent ID in the
system registry.

12-6

Component Registration

When a component is created, you can specify a version number. (The default
is 1.0.) During the development of a specific version of a component, the
version number should be kept constant. When this is done, the MATLAB®

Compiler™ product, in certain cases, reuses type library, class, and interface
GUIDs for each subsequent build of the component. This avoids the creation
of an excessive number of registry keys for the same component during
multiple builds, as occurs if new GUIDs are generated for each build.

When a new version number is introduced, MATLAB Compiler generates new
class and interface GUIDs so that the system recognizes them as distinct from
previous versions, even if the class name is the same. Therefore, once you
deploy a built component, use a new version number for any changes made
to the component. This ensures that after you deploy the new component, it
is easy to manage the two versions.

MATLAB Compiler implements the versioning rules for a specific component
name, class name, and version number by querying the system registry for an
existing component with the same name:

• If an existing component has the same version, it uses the GUID of the
existing component’s type library. If the name of the new class matches the
previous version, it reuses the class and interface GUIDs. If the class names
do not match, it generates new GUIDs for the new class and interface.

• If it finds an existing component with a different version, it uses the
existing type library GUID and creates a new subkey for the new version
number. It generates new GUIDs for the new class and interface.

• If it does not find an existing component of the specified name, it generates
new GUIDs for the component’s type library, class, and interface.

12-7

12 How the MATLAB® Builder™ NE Product Creates COM Components

Data Conversion

In this section...

“Conversion Rules” on page 12-8

“Array Formatting Flags” on page 12-19

“Data Conversion Flags” on page 12-21

Conversion Rules
This section describes the data conversion rules for COM components created
with the MATLAB® Builder™ NE product. These components are dual
interface COM objects that support data types compatible with Automation.

Note Automation (formerly called OLE Automation) is a technology that
allows software packages to expose their unique features to scripting tools
and other applications. Automation uses the Component Object Model (COM),
but may be implemented independently from other OLE features, such as
in-place activation. Be aware that IIS (Internet Information Service) usually
prevents most COM automation on the basis that it may pose a security risk.
Therefore, XLSREAD and other Automation services may fail when served by
IIS, leading to errors such as object reference not set.

When a method is invoked on a MATLAB Builder NE component, the
input parameters are converted to MATLAB® internal array format and
passed to the compiled MATLAB function. When the function exits, the
output parameters are converted from MATLAB internal array format to
COM Automation types.

The COM client passes all input and output arguments in the compiled
MATLAB functions as type VARIANT. The COM VARIANT type is a union of
several simple data types. A type VARIANT variable can store a variable of any
of the simple types, as well as arrays of any of these values.

The Win32 Application Program Interface (API) provides many functions for
creating and manipulating VARIANTs in C/C++, and Microsoft® Visual Basic®

provides native language support for this type. See the Microsoft® Visual

12-8

Data Conversion

Studio® documentation for definitions and API support for COM VARIANTs.
VARIANT variables are self describing and store their type code as an internal
field of the structure.

Note This discussion of data refers to both VARIANT and Variant data types.
VARIANT is the C++ name and Variant is the corresponding data type in
Visual Basic®.

See VARIANT Type Codes Supported on page 12-9 for a list of the VARIANT
type codes supported by the builder components.

See MATLAB® to COM VARIANT Conversion Rules on page 12-11 and COM
VARIANT to MATLAB® Conversion Rules on page 12-15 for conversion rules
between COM VARIANTs and MATLAB arrays.

VARIANT Type Codes Supported

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code
(Visual Basic)

Visual
Basic
Type Definition

VT_EMPTY - vbEmpty - Uninitialized
VARIANT

VT_I1 char - - Signed one-byte
character

VT_UI1 unsigned char vbByte Byte Unsigned one-byte
character

VT_I2 short vbInteger Integer Signed two-byte
integer

VT_UI2 unsigned
short

- - Unsigned two-byte
integer

VT_I4 long vbLong Long Signed four-byte
integer

VT_UI4 unsigned long - - Unsigned four-byte
integer

12-9

12 How the MATLAB® Builder™ NE Product Creates COM Components

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code
(Visual Basic)

Visual
Basic
Type Definition

VT_R4 float vbSingle Single IEEE® four-byte
floating-point value

VT_R8 double vbDouble Double IEEE eight-byte
floating-point value

VT_CY CY+ vbCurrency Currency Currency value
(64-bit integer, scaled
by 10,000)

VT_BSTR BSTR+ vbString String String value

VT_ERROR SCODE+ vbError - A HRESULT (Signed
four-byte integer
representing a COM
error code)

VT_DATE DATE+ vbDate Date Eight-byte floating
point value
representing date
and time

VT_INT int - - Signed integer;
equivalent to type
int

VT_UINT unsigned int - - Unsigned integer;
equivalent to type
unsigned int

VT_DECIMAL DECIMAL+ vbDecimal - 96-bit (12-byte)
unsigned integer,
scaled by a variable
power of 10

VT_BOOL VARIANT_BOOL+ vbBoolean Boolean Two-byte Boolean
value (0xFFFF =
True; 0x0000 = False)

12-10

Data Conversion

VARIANT Type Codes Supported (Continued)

VARIANT Type Code
(C/C++) C/C++ Type

Variant Type
Code
(Visual Basic)

Visual
Basic
Type Definition

VT_DISPATCH IDispatch* vbObject Object IDispatch* pointer
to an object

VT_VARIANT VARIANT+ vbVariant Variant VARIANT (can only be
specified if combined
with VT_BYREF or
VT_ARRAY)

<anything>|VT_ARRAY Bitwise combine
VT_ARRAY with any
basic type to declare
as an array

<anything>|VT_BYREF Bitwise combine
VT_BYREF with any
basic type to declare
as a reference to a
value

+ Denotes Windows-specific type. Not part of standard C/C++.

MATLAB® to COM VARIANT Conversion Rules

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

cell A 1-by-1 cell array
converts to a single
VARIANT with a type
conforming to the
conversion rule for the
MATLAB data type of
the cell contents.

A multidimensional
cell array converts
to a VARIANT of type
VT_VARIANT|VT_ARRAY
with the type of
each array member
conforming to the
conversion rule for the
MATLAB data type of
the corresponding cell.

12-11

12 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB® to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

structure VT_DISPATCH VT_DISPATCH A MATLAB struct
array is converted to
an MWStruct object.
(See “Class MWStruct”
on page 13-16.) This
object is passed as a
VT_DISPATCH type.

char A 1-by-1 char matrix
converts to a VARIANT
of type VT_BSTR with
string length = 1.

A 1-by-L char matrix is
assumed to represent
a string of length Lin
MATLAB. This case
converts to a VARIANT
of type VT_BSTR with a
string length = L. char
matrices of more than
one row, or of a higher
dimensionality convert
to a VARIANT of type
VT_BSTR|VT_ARRAY.
Each string in the
converted array
is of length 1 and
corresponds to each
character in the
original matrix.

Arrays of strings are
not supported as char
matrices. To pass an
array of strings, use
a cell array of 1-by-L
char matrices.

sparse VT_DISPATCH VT_DISPATCH A MATLAB sparse
array is converted to
an MWSparse object.
(See “Class MWSparse”
on page 13-26.) This
object is passed as a
VT_DISPATCH type.

12-12

Data Conversion

MATLAB® to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

double A real 1-by-1 double
matrix converts to
a VARIANT of type
VT_R8. A complex
1-by-1 double matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
double matrix converts
to a VARIANT of type
VT_R8|VT_ARRAY.
A complex
multidimensional
double matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class. See “Class
MWComplex” on page
13-24.)

single A real 1-by-1 single
matrix converts to a
VARIANT of type VT_R4.
A complex 1-by-1 single
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
single matrix converts
to a VARIANT of type
VT_R4|VT_ARRAY.
A complex
multidimensional
single matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

int8 A real 1-by-1 int8
matrix converts to a
VARIANT of type VT_I1.
A complex 1-by-1 int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional int8
matrix converts to
a VARIANT of type
VT_I1|VT_ARRAY.
A complex
multidimensional int8
matrix converts to
a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

12-13

12 How the MATLAB® Builder™ NE Product Creates COM Components

MATLAB® to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

uint8 A real 1-by-1 uint8
matrix converts to
a VARIANT of type
VT_UI1. A complex
1-by-1 uint8 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_UI1|VT_ARRAY.A
complex
multidimensional
uint8 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

int16 A real 1-by-1 int16
matrix converts to a
VARIANT of type VT_I2.
A complex 1-by-1 int16
matrix converts to
a VARIANT of type
VT_DISPATCH.

A real
multidimensional
int16 matrix converts
to a VARIANT of type
VT_I2|VT_ARRAY.
A complex
multidimensional
int16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

uint16 A real 1-by-1 uint16
matrix converts to
a VARIANT of type
VT_UI2. A complex
1-by-1 uint16 matrix
converts to a VARIANT
of type VT_DISPATCH.

A real
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_UI2|VT_ARRAY.
A complex
multidimensional
uint16 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

12-14

Data Conversion

MATLAB® to COM VARIANT Conversion Rules (Continued)

MATLAB Data
Type

VARIANT Type for
Scalar Data

VARIANT Type for
Array Data Comments

int32 A 1-by-1 int32 matrix
converts to a VARIANT of
type VT_I4. A complex
1-by-1 int32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
int32 matrix converts
to a VARIANT of type
VT_I4|VT_ARRAY.
A complex
multidimensional
int32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

uint32 A 1-by-1 uint32 matrix
converts to a VARIANT of
type VT_UI4. A complex
1-by-1 uint32 matrix
converts to a VARIANT
of type VT_DISPATCH.

A multidimensional
uint32 matrix converts
to a VARIANT of type
VT_UI4|VT_ARRAY.
A complex
multidimensional
uint32 matrix converts
to a VARIANT of type
VT_DISPATCH.

Complex arrays are
passed to and from
compiled M-functions
using the MWComplex
class.

Function handle VT_EMPTY VT_EMPTY Not supported

Java™ class VT_EMPTY VT_EMPTY Not supported

User class VT_EMPTY VT_EMPTY Not supported

logical VT_Bool VT_Bool|VT_ARRAY

COM VARIANT to MATLAB® Conversion Rules

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_EMPTY N/A Empty array created.

VT_I1 int8

VT_UI1 uint8

12-15

12 How the MATLAB® Builder™ NE Product Creates COM Components

COM VARIANT to MATLAB® Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_I2 int16

VT_UI2 uint16

VT_I4 int32

VT_UI4 uint32

VT_R4 single

VT_R8 double

VT_CY double

VT_BSTR char A VARIANT of type VT_BSTR
converts to a 1-by-L MATLAB
char array, where L = the
length of the string to be
converted. A VARIANT of type
VT_BSTR|VT_ARRAY converts to
a MATLAB cell array of 1-by-L
char arrays.

VT_ERROR int32

12-16

Data Conversion

COM VARIANT to MATLAB® Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_DATE double VARIANT dates are stored as
doubles starting at midnight
Dec. 31, 1899. MATLAB dates
are stored as doubles starting
at 0/0/00 00:00:00. Therefore,
a VARIANT date of 0.0 maps to
a MATLAB numeric date of
693960.0. VARIANT dates are
converted to MATLAB double
types and incremented by
693960.0.
VARIANT dates can be optionally
converted to strings. See “Data
Conversion Flags” on page
12-21 for more information on
type coercion.

VT_INT int32

VT_UINT uint32

VT_DECIMAL double

VT_BOOL logical

12-17

12 How the MATLAB® Builder™ NE Product Creates COM Components

COM VARIANT to MATLAB® Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

VT_DISPATCH Varies IDispatch* pointers are
treated within the context of
what they point to. Objects
must be supported types with
known data extraction and
conversion rules, or expose a
generic Value property that
points to a single VARIANT type.
Data extracted from an object
is converted based upon the
rules for the particular VARIANT
obtained.

Currently, support exists for
Excel® Range objects as well
as the builder types MWStruct,
MWComplex, MWSparse, and
MWArg. See “Utility Library
Classes” on page 13-3“Utility
Library Classes” on page
13-3 for information on the
builder types to use with COM
components.

12-18

Data Conversion

COM VARIANT to MATLAB® Conversion Rules (Continued)

VARIANT Type
MATLAB Data Type (Scalar or
Array Data) Comments

anything|VT_BYREF Varies Pointers to any of the basic
types are processed according
to the rules for what they point
to. The resulting MATLAB
array contains a deep copy of
the values.

anything|VT_ARRAY Varies Multidimensional VARIANT
arrays convert to
multidimensional MATLAB
arrays, each element converted
according to the rules for the
basic types. Multidimensional
VARIANT arrays of type
VT_VARIANT|VT_ARRAY convert
to multidimensional cell arrays,
each cell converted according to
the rules for that specific type.

Array Formatting Flags
The builder components have flags that control how array data is formatted
in both directions. Generally, you should develop client code that matches the
intended inputs and outputs of the MATLAB functions with the corresponding
methods on the compiled COM objects, in accordance with the rules listed in
MATLAB® to COM VARIANT Conversion Rules on page 12-11 and COM
VARIANT to MATLAB® Conversion Rules on page 12-15. In some cases this is
not possible, for example, when existing MATLAB code is used in conjunction
with a third-party product like Excel.

The following table shows the array formatting flags.

12-19

12 How the MATLAB® Builder™ NE Product Creates COM Components

Array Formatting Flags

Flag Description

InputArrayFormat Defines the array formatting rule used on input arrays.
An input array is a VARIANT array, created by the
client, sent as an input parameter to a method call on a
compiled COM object.
Valid values for this flag are mwArrayFormatAsIs,
mwArrayFormatMatrix, and mwArrayFormatCell.

mwArrayFormatAsIs passes the array unchanged.

mwArrayFormatMatrix (default) formats all arrays
as matrices. When the input VARIANT is of type
VT_ARRAY| type, where type is any numeric type,
this flag has no effect. When the input VARIANT is of
type VT_VARIANT|VT_ARRAY, VARIANTs in the array are
examined. If they are single-valued and homogeneous
in type, a MATLAB matrix of the appropriate type is
produced instead of a cell array.

mwArrayFormatCell interprets all arrays as MATLAB
cell arrays.

InputArrayIndFlag Sets the input array indirection level used with the
InputArrayFormat flag (applicable only to nested arrays,
i.e., VARIANT arrays of VARIANTs, which themselves are
arrays). The default value for this flag is zero, which
applies the InputArrayFormat flag to the outermost
array. When this flag is greater than zero, e.g., equal
to N, the formatting rule attempts to apply itself to the
Nth level of nesting.

OutputArrayFormat Defines the array formatting rule used on output arrays.
An output array is a MATLAB array, created by the
compiled COM object, sent as an output parameter
from a method call to the client. The values for this
flag, mwArrayFormatAsIs, mwArrayFormatMatrix, and
mwArrayFormatCell, cause the same behavior as the
corresponding InputArrayFormat flag values.

12-20

Data Conversion

Array Formatting Flags (Continued)

Flag Description

OutputArrayIndFlag (Applies to nested cell arrays only.) Output array
indirection level used with the OutputArrayFormat flag.
This flag works exactly like InputArrayIndFlag.

AutoResizeOutput (Applies to Excel ranges only.) When the target output
from a method call is a range of cells in an Excel
worksheet and the output array size and shape is not
known at the time of the call, set this flag to True to
resize each Excel range to fit the output array.

TransposeOutput Set this flag to True to transpose the output arguments.
Useful when calling a MATLAB Builder NE component
from Excel where the MATLAB function returns outputs
as row vectors, and you want the data in columns.

Data Conversion Flags
MATLAB Builder NE components contain flags to control the conversion of
certain VARIANT types to MATLAB types. These flags are as follows:

• “CoerceNumericToType” on page 12-21

• “InputDateFormat” on page 12-22

• “OutputAsDate As Boolean” on page 12-22

• “DateBias As Long” on page 12-22

CoerceNumericToType
This flag tells the data converter to convert all numeric VARIANT data to one
specific MATLAB type. VARIANT type codes affected by this flag are VT_I1,
VT_UI1, VT_I2, VT_UI2, VT_I4, VT_UI4, VT_R4, VT_R8, VT_CY, VT_DECIMAL,
VT_INT, VT_UINT, VT_ERROR, VT_BOOL, and VT_DATE. Valid values for this
flag are mwTypeDefault, mwTypeChar, mwTypeDouble, mwTypeSingle,
mwTypeLogical, mwTypeInt8, mwTypeUint8, mwTypeInt16, mwTypeUint16,
mwTypeInt32, and mwTypeUint32.

12-21

12 How the MATLAB® Builder™ NE Product Creates COM Components

The default for this flag, mwTypeDefault, converts numeric data according to
the rules listed in “Data Conversion” on page 12-8.

InputDateFormat
This flag tells the data converter how to convert VARIANT dates to MATLAB
dates. Valid values for this flag are mwDateFormatNumeric (default) and
mwDateFormatString. The default converts VARIANT dates according to
the rule listed in VARIANT Type Codes Supported on page 12-9 . The
mwDateFormatString flag converts a VARIANT date to its string representation.
This flag only affects VARIANT type code VT_DATE.

OutputAsDate As Boolean
This flag instructs the data converter to process an output argument as a
date. By default, numeric dates that are output parameters from compiled
MATLAB functions are passed as Doubles that need to be decremented by
the COM date bias (693960) as well as coerced to COM dates. Set this flag to
True to convert all output values of type Double.

DateBias As Long
This flag sets the date bias for performing COM to MATLAB numeric date
conversions. The default value of this property is 693960, which represents
the difference between the COM Date type and MATLAB numeric dates. This
flag allows existing MATLAB code that already performs the increment of
numeric dates by 693960 to be used unchanged with the builder components.
To process dates with such code, set this property to 0.

12-22

Calling Conventions

Calling Conventions

In this section...

“Producing a COM Class” on page 12-23

“IDL Mapping” on page 12-24

“Microsoft® Visual Basic® Mapping” on page 12-25

Producing a COM Class
Producing a COM class requires the generation of

• A class definition file in Interface Description Language (IDL)

• One or more associated C++ class definition/implementation files

The MATLAB® Builder™ NE product automatically produces the necessary
IDL and C/C++ code to build each COM class in the component. This process
is generally transparent to you when you use the builder to generate a COM
component, and to users of the COM component when they program with it.

For information about IDL and C++ coding rules for building COM objects
and for mappings to other languages, see articles in the MSDN Library.

The following table shows the mapping of a generic M-function to IDL code
and to Microsoft® Visual Basic®.

12-23

http://msdn.microsoft.com/library/

12 How the MATLAB® Builder™ NE Product Creates COM Components

Code Sample

Generic
M-Code function [Y1, Y2, ..., varargout] = foo(X1, X2, ..., varargin)

IDL Code
HRESULT foo([in] long nargout,

[in,out] VARIANT* Y1,
[in,out] VARIANT* Y2,
.
.
[in,out] VARIANT* varargout,
[in] VARIANT X1,
[in] VARIANT X2,
.
.
[in] VARIANT varargin);

Visual Basic®

Code Sub foo(nargout As Long, _
Y1 As Variant, _
Y2 As Variant, _
.
.
varargout As Variant, _
X1 As Variant, _
X2 As Varaint, _
.
.
varargin As Variant)

IDL Mapping
The IDL function definition is generated by producing a function with the
same name as the original M-function and an argument list containing all
inputs and outputs of the original plus one additional parameter, nargout.

When present, the nargout parameter is an [in] parameter of type long. It
is always the first argument in the list. This parameter allows correct passage
of the MATLAB® nargout parameter to the compiled M-code. The nargout

12-24

Calling Conventions

parameter is not produced if you encapsulate an M-function containing no
outputs.

Following the nargout parameter, the outputs are listed in the order they
appear on the left side of the MATLAB function, and are tagged as [in,out],
meaning that they are passed in both directions.

The function inputs are listed next, appearing in the same order as they
do on the right side of the original function. All inputs are tagged as [in]
parameters.

When present, the optional varargin/varargout parameters are always listed
as the last input parameters and the last output parameters. All parameters
other than nargout are passed as COM VARIANT types. “Data Conversion”
on page 12-8 lists the rules for conversion between MATLAB arrays and
COM VARIANTs.

Microsoft® Visual Basic® Mapping
Microsoft Visual Basic provides native support for COM Variants with the
Variant type, as well as implicit conversions for all Visual Basic basic types
to and from Variants. In general, arrays/scalars of any Visual Basic basic
type, as well as arrays/scalars of Variant types, can be passed as arguments.

MATLAB Builder NE components also provide direct support for the
Microsoft® Excel® Range object, used by Visual Basic for Applications to
represent a range of cells in an Excel® worksheet.

See the Visual Basic for Applications documentation included with Microsoft
Excel for more information on Visual Basic data types.

See the MSDN Library for more information about Visual Basic and about
Excel Range manipulation.

12-25

http://msdn.microsoft.com/library/

12 How the MATLAB® Builder™ NE Product Creates COM Components

12-26

13

Utility Library for
Microsoft® COM
Components

Referencing the Utility Classes
(p. 13-2)

Referencing the classes in your
programming environment

Utility Library Classes (p. 13-3) Describes the classes provided in the
Utility Library.

Enumerations (p. 13-31) Describes the three provided sets of
constants.

13 Utility Library for Microsoft® COM Components

Referencing the Utility Classes
This section describes the MWComUtil Library. This library is freely
distributable and includes several functions used in array processing, as well
as type definitions used in data conversion. This library is contained in the
file mwcomutil.dll. It must be registered once on each machine that uses
Microsoft® COM components created by the MATLAB® Builder™ EX product.

Register the MWComUtil library at the DOS command prompt with the
command

mwregsvr mwcomutil.dll

The MWComUtil library includes seven classes (see “Utility Library Classes”
on page 13-3) and three enumerated types (see “Enumerations” on page
13-31). Before using these types, you must make explicit references to the
MWComUtil type libraries in the Microsoft® Visual Basic® IDE. To do this select
Tools>References from the main menu of the VB editor. The References
dialog box appears with a scrollable list of available type libraries. From this
list select MWComUtil 1.0 Type Library and click OK.

Note You must specify the full path of the component when calling mwregsvr,
or make the call from the directory in which the component resides.

13-2

Utility Library Classes

Utility Library Classes

In this section...

“Class MWUtil” on page 13-3

“Class MWFlags” on page 13-10

“Class MWStruct” on page 13-16

“Class MWField” on page 13-23

“Class MWComplex” on page 13-24

“Class MWSparse” on page 13-26

“Class MWArg” on page 13-29

Class MWUtil
The MWUtil class contains a set of static utility methods used in array
processing and application initialization. This class is implemented internally
as a singleton (only one global instance of this class per instance of Microsoft®

Excel®). It is most efficient to declare one variable of this type in global scope
within each module that uses it. The methods of MWUtil are

• “Sub MWInitApplication(pApp As Object)” on page 13-3

• “Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])” on page 13-5

• “Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean =
False], [pVar0], [pVar1], ..., [pVar31])” on page 13-6

• “Sub MWDate2VariantDate(pVar)” on page 13-8

The function prototypes use Visual Basic® syntax.

Sub MWInitApplication(pApp As Object)
Initializes the library with the current instance of Microsoft Excel.

13-3

13 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

pApp Object A valid reference to
the current Excel®

application

Return Value. None.

Remarks. This function must be called once for each session of Excel that
uses COM components created by the MATLAB® Builder for .NET product. An
error is generated if a method call is made to a member class of any MATLAB
Builder for .NET COM component, and the library has not been initialized.

Example. This Visual Basic sample initializes the MWComUtil library with
the current instance of Excel. A global variable of type Object named MCLUtil
holds an instance of the MWUtil class, and another global variable of type
Boolean named bModuleInitialized stores the status of the initialization
process. The private subroutine InitModule() creates an instance of the
MWComUtil class and calls the MWInitApplication method with an argument
of Application. Once this function succeeds, all subsequent calls exit without
recreating the object.

Dim MCLUtil As Object
Dim bModuleInitialized As Boolean

Private Sub InitModule()
If Not bModuleInitialized Then

On Error GoTo Handle_Error
If MCLUtil Is Nothing Then

Set MCLUtil = CreateObject("MWComUtil.MWUtil")
End If
Call MCLUtil.MWInitApplication(Application)
bModuleInitialized = True
Exit Sub

Handle_Error:
bModuleInitialized = False

End If
End Sub

13-4

Utility Library Classes

Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
Packs a variable length list of Variant arguments into a single Variant
array. This function is typically used for creating a varargin cell from a list
of separate inputs. Each input in the list is added to the array only if it is
nonempty and nonmissing. (In Visual Basic, a missing parameter is denoted
by a Variant type of vbError with a value of &H80020004.)

Parameters.

Argument Type Description

pVarArg Variant Receives the resulting
array

[Var0], [Var1], ... Variant Optional list of
Variants to pack into
the array. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function always frees the contents of pVarArg before
processing the list.

Example. This example uses MWPack in a formula function to produce a
varargin cell to pass as an input parameter to a method compiled from a
MATLAB function with the signature

function y = mysum(varargin)
y = sum([varargin{:}]);

The function returns the sum of the elements in varargin. Assume that this
function is a method of a class named myclass that is included in a component
named mycomponent with a version of 1.0. The Visual Basic function allows
up to 10 inputs, and returns the result y. If an error occurs, the function
returns the error string. This function assumes that MWInitApplication
has been previously called.

13-5

13 Utility Library for Microsoft® COM Components

Function mysum(Optional V0 As Variant, _
Optional V1 As Variant, _
Optional V2 As Variant, _
Optional V3 As Variant, _
Optional V4 As Variant, _
Optional V5 As Variant, _
Optional V6 As Variant, _
Optional V7 As Variant, _
Optional V8 As Variant, _
Optional V9 As Variant) As Variant

Dim y As Variant
Dim varargin As Variant
Dim aClass As Object
Dim aUtil As Object

On Error Goto Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aUtil.MWPack(varargin,V0,V1,V2,V3,V4,V5,V6,V7,V8,V9)
Call aClass.mysum(1, y, varargin)
mysum = y
Exit Function

Handle_Error:
mysum = Err.Description

End Function

Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As
Boolean = False], [pVar0], [pVar1], ..., [pVar31])
Unpacks an array of Variants into individual Variant arguments. This
function provides the reverse functionality of MWPack and is typically used to
process a varargout cell into individual Variants.

Parameters.

Argument Type Description

VarArg Variant Input array of Variants
to be processed

13-6

Utility Library Classes

Argument Type Description

nStartAt Long Optional starting
index (zero-based)
in the array to begin
processing. Default = 0.

bAutoResize Boolean Optional auto-resize
flag. If this flag is
True, any Excel range
output arguments
are resized to fit the
dimensions of the
Variant to be copied.
The resizing process is
applied relative to the
upper left corner of the
supplied range. Default
= False.

[pVar0],[pVar1],
...

Variant Optional list of
Variants to receive the
array items contained
in VarArg. From 0 to
32 arguments can be
passed.

Return Value. None.

Remarks. This function can process a Variant array in one single call or
through multiple calls using the nStartAt parameter.

Example. This example uses MWUnpack to process a varargout cell into
several Excel ranges, while auto-resizing each range. The varargout
parameter is supplied from a method that has been compiled from the
MATLAB function.

function varargout = randvectors
for i=1:nargout

varargout{i} = rand(i,1);
end

13-7

13 Utility Library for Microsoft® COM Components

This function produces a sequence of nargout random column vectors, with
the length of the ith vector equal to i. Assume that this function is included in
a class named myclass that is included in a component named mycomponent
with a version of 1.0. The Visual Basic subroutine takes no arguments and
places the results into Excel columns starting at A1, B1, C1, and D1. If an
error occurs, a message box displays the error text. This function assumes
that MWInitApplication has been previously called.

Sub GenVectors()
Dim aClass As Object
Dim aUtil As Object
Dim v As Variant
Dim R1 As Range
Dim R2 As Range
Dim R3 As Range
Dim R4 As Range

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")
Set aUtil = CreateObject("MWComUtil.MWUtil")
Set R1 = Range("A1")
Set R2 = Range("B1")
Set R3 = Range("C1")
Set R4 = Range("D1")
Call aClass.randvectors(4, v)
Call aUtil.MWUnpack(v,0,True,R1,R2,R3,R4)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Sub MWDate2VariantDate(pVar)
Converts output dates from MATLAB to Variant dates.

13-8

Utility Library Classes

Parameters.

Argument Type Description

pVar Variant Variant to be converted

Return Value. None.

Remarks. The MATLAB product handles dates as double-precision
floating-point numbers with 0.0 representing 0/0/00 00:00:00. By default,
numeric dates that are output parameters from compiled MATLAB functions
are passed as Doubles that need to be decremented by the COM date bias as
well as coerced to COM dates. The MWDate2VariantDate method performs
this transformation and additionally converts dates in string form to COM
date types.

Example. This example uses MWDate2VariantDate to process numeric dates
returned from a method compiled from the following MATLAB function.

function x = getdates(n, inc)
y = now;
for i=1:n

x(i,1) = y + (i-1)*inc;
end

This function produces an n-length column vector of numeric values
representing dates starting from the current date and time with each element
incremented by inc days. Assume that this function is included in a class
named myclass that is included in a component named mycomponent with
a version of 1.0. The subroutine takes an Excel range and a Double as
inputs and places the generated dates into the supplied range. If an error
occurs, a message box displays the error text. This function assumes that
MWInitApplication has been previously called.

Sub GenDates(R As Range, inc As Double)
Dim aClass As Object
Dim aUtil As Object

On Error GoTo Handle_Error
Set aClass = CreateObject("mycomponent.myclass.1_0")

13-9

13 Utility Library for Microsoft® COM Components

Set aUtil = CreateObject("MWComUtil.MWUtil")
Call aClass.getdates(1, R, R.Rows.Count, inc)
Call aUtil.MWDate2VariantDate(R)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWFlags
The MWFlags class contains a set of array formatting and data conversion flags
(See “Data Conversion Rules ” on page 7-4 for more information on conversion
between the MATLAB product and COM Automation types). All MATLAB
Builder for .NET COM components contain a reference to an MWFlags object
that can modify data conversion rules at the object level. This class contains
these properties:

• “Property ArrayFormatFlags As MWArrayFormatFlags” on page 13-10

• “Property DataConversionFlags As MWDataConversionFlags” on page
13-13

• “Sub Clone(ppFlags As MWFlags)” on page 13-15

Property ArrayFormatFlags As MWArrayFormatFlags
The ArrayFormatFlags property controls array formatting (as a matrix
or a cell array) and the application of these rules to nested arrays. The
MWArrayFormatFlags class is a noncreatable class accessed through an
MWFlags class instance. This class contains six properties:

• “Property InputArrayFormat As mwArrayFormat” on page 13-11

• “Property InputArrayIndFlag As Long” on page 13-11

• “Property OutputArrayFormat As mwArrayFormat” on page 13-12

• “Property OutputArrayIndFlag As Long” on page 13-12

• “Property AutoResizeOutput As Boolean” on page 13-13

• “Property TransposeOutput As Boolean” on page 13-13

13-10

Utility Library Classes

Property InputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as input parameters
to .NET Builder class methods. The default value is mwArrayFormatMatrix.
The behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Input Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in .

mwArrayFormatCell Coerces all arrays into cell arrays.
Input scalar or numeric array
arguments are converted to cell
arrays with each cell containing a
scalar value for the respective index.

mwArrayFormatMatrix Coerces all arrays into matrices.
When an input argument is
encountered that is an array of
Variants (the default behavior is
to convert it to a cell array), the
data converter converts this array
to a matrix if each Variant is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible,
creates a cell array.

Property InputArrayIndFlag As Long. This property governs the level at
which to apply the rule set by the InputArrayFormat property for nested
arrays (an array of Variants is passed and each element of the array is an
array itself). It is not necessary to modify this flag for varargin parameters.
The data conversion code automatically increments the value of this flag by
1 for varargin cells, thus applying the InputArrayFormat flag to each cell
of a varargin parameter. The default value is 0.

13-11

13 Utility Library for Microsoft® COM Components

Property OutputArrayFormat As mwArrayFormat. This property of type
mwArrayFormat controls the formatting of arrays passed as output parameters
to .NET Builder class methods. The default value is mwArrayFormatAsIs. The
behaviors indicated by this flag are listed in the next table.

Array Formatting Rules for Output Arrays

Value Behavior

mwArrayFormatAsIs Converts arrays according to the
default conversion rules listed in .

mwArrayFormatMatrix Coerces all arrays into matrices.
When an output cell array argument
is encountered (the default behavior
converts it to an array of Variants),
the data converter converts this
array to a Variant that contains a
simple numeric array if each cell is
single valued, and all elements are
homogeneous and of a numeric type.
If this conversion is not possible, an
array of Variants is created.

mwArrayFormatCell Coerces all output arrays into
arrays of Variants. Output scalar
or numeric array arguments are
converted to arrays of Variants,
each Variant containing a scalar
value for the respective index.

Property OutputArrayIndFlag As Long. This property is similar to the
InputArrayIndFalg property, as it governs the level at which to apply the
rule set by the OutputArrayFormat property for nested arrays. As with
the input case, this flag is automatically incremented by 1 for a varargout
parameter. The default value of this flag is 0.

13-12

Utility Library Classes

Property AutoResizeOutput As Boolean. This flag applies to Excel ranges
only. When the target output from a method call is a range of cells in an Excel
worksheet, and the output array size and shape is not known at the time of the
call, setting this flag to True instructs the data conversion code to resize each
Excel range to fit the output array. Resizing is applied relative to the upper
left corner of each supplied range. The default value for this flag is False.

Property TransposeOutput As Boolean. Setting this flag to True
transposes the output arguments. This flag is useful when processing an
output parameter from a method call on a COM component, where the
MATLAB function returns outputs as row vectors, and you desire to place the
data into columns. The default value for this flag is False.

Property DataConversionFlags As MWDataConversionFlags
The DataConversionFlags property controls how input variables are
processed when type coercion is needed. The MWDataConversionFlags class
is a noncreatable class accessed through an MWFlags class instance. This
class contains these properties:

• “Property CoerceNumericToType As mwDataType” on page 13-13

• “Property InputDateFormat As mwDateFormat” on page 13-13

• “Example” on page 13-14

• “PropertyOutputAsDate As Boolean” on page 13-15

• “PropertyDateBias As Long” on page 13-15

Property CoerceNumericToType As mwDataType. This property
converts all numeric input arguments to one specific MATLAB type. This
flag is useful is when variables maintained within the Visual Basic code
are different types, e.g., Long, Integer, etc., and all variables passed to the
compiled MATLAB code must be doubles. The default value for this property
is mwTypeDefault, which uses the default rules in .

Property InputDateFormat As mwDateFormat. This property converts
dates passed as input parameters to method calls on .NET Builder classes.
The default value is mwDateFormatNumeric. The behaviors indicated by this
flag are shown in the following table.

13-13

13 Utility Library for Microsoft® COM Components

Conversion Rules for Input Dates

Value Behavior

mwDateFormatNumeric Convert dates to numeric values as
indicated by the rule listed in .

mwDateFormatString Convert input dates to strings.

Example. This example uses data conversion flags to reshape the output
from a method compiled from a MATLAB function that produces an output
vector of unknown length.

function p = myprimes(n)
if length(n)~=1, error('N must be a scalar'); end
if n < 2, p = zeros(1,0); return, end
p = 1:2:n;
q = length(p);
p(1) = 2;
for k = 3:2:sqrt(n)

if p((k+1)/2)
p(((k*k+1)/2):k:q) = 0;

end
end
p = (p(p>0));

This function produces a row vector of all the prime numbers between 0 and
n. Assume that this function is included in a class named myclass that
is included in a component named mycomponent with a version of 1.0. The
subroutine takes an Excel range and a Double as inputs, and places the
generated prime numbers into the supplied range. The MATLAB function
produces a row vector, although you want the output in column format. It also
produces an unknown number of outputs, and you do not want to truncate
any output. To handle these issues, set the TransposeOutput flag and the
AutoResizeOutput flag to True. In previous examples, the Visual Basic
CreateObject function creates the necessary classes. This example uses an
explicit type declaration for the aClass variable. As with previous examples,
this function assumes that MWInitApplication has been previously called.

Sub GenPrimes(R As Range, n As Double)
Dim aClass As mycomponent.myclass

13-14

Utility Library Classes

On Error GoTo Handle_Error
Set aClass = New mycomponent.myclass
aClass.MWFlags.ArrayFormatFlags.AutoResizeOutput = True
aClass.MWFlags.ArrayFormatFlags.TransposeOutput = True
Call aClass.myprimes(1, R, n)
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

PropertyOutputAsDate As Boolean. This property processes an output
argument as a date. By default, numeric dates that are output parameters
from compiled MATLAB functions are passed as Doubles that need to be
decremented by the COM date bias (693960) as well as coerced to COM dates.
Set this flag to True to convert all output values of type Double.

PropertyDateBias As Long. This property sets the date bias for performing
COM to MATLAB numeric date conversions. The default value of this
property is 693960, representing the difference between the COM Date type
and MATLAB numeric dates. This flag allows existing MATLAB code that
already performs the increment of numeric dates by 693960 to be used
unchanged with COM components created by MATLAB® Builder™ NE. To
process dates with such code, set this property to 0.

Sub Clone(ppFlags As MWFlags)
Creates a copy of an MWFlags object.

Parameters.

Argument Type Description

ppFlags MWFlags Reference to an
uninitialized MWFlags
object that receives the
copy

Return Value. None

13-15

13 Utility Library for Microsoft® COM Components

Remarks. Clone allocates a new MWFlags object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWStruct
The MWStruct class passes or receives a Struct type to or from a compiled
class method. This class contains seven properties/methods:

• “Sub Initialize([varDims], [varFieldNames])” on page 13-16

• “Property Item([i0], [i1], ..., [i31]) As MWField” on page 13-18

• “Property NumberOfFields As Long” on page 13-20

• “Property NumberOfDims As Long” on page 13-20

• “Property Dims As Variant” on page 13-21

• “Property FieldNames As Variant” on page 13-21

• “Sub Clone(ppStruct As MWStruct)” on page 13-22

Sub Initialize([varDims], [varFieldNames])
This method allocates a structure array with a specified number and size of
dimensions and a specified list of field names.

Parameters.

Argument Type Description

varDims Variant Optional array of
dimensions

varFieldNames Variant Optional array of field
names

Return Value. None.

13-16

Utility Library Classes

Remarks. When created, an MWStruct object has a dimensionality of 1-by-1
and no fields. The Initialize method dimensions the array and adds a set of
named fields to each element. Each time you call Initialize on the same
object, it is redimensioned. If you do not supply the varDims argument, the
existing number and size of the array’s dimensions unchanged. If you do not
supply the varFieldNames argument, the existing list of fields is not changed.
Calling Initialize with no arguments leaves the array unchanged.

Example. The following Visual Basic code illustrates use of the Initialize
method to dimension struct arrays.

Sub foo ()
Dim x As MWStruct
Dim y As MWStruct

On Error Goto Handle_Error
'Create 1X1 struct arrays with no fields for x, and y
Set x = new MWStruct
Set y = new MWStruct

'Initialize x to be 2X2 with fields "red", "green", and "blue"
Call x.Initialize(Array(2,2), Array("red", "green", "blue"))
'Initialize y to be 1X5 with fields "name" and "age"
Call y.Initialize(5, Array("name", "age"))

'Re-dimension x to be 3X3 with the same field names
Call x.Initialize(Array(3,3))

'Add a new field to y
Call y.Initialize(, Array("name", "age", "salary"))

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

13-17

13 Utility Library for Microsoft® COM Components

Property Item([i0], [i1], ..., [i31]) As MWField
The Item property is the default property of the MWStruct class. This property
is used to set/get the value of a field at a particular index in the structure
array.

Parameters.

Argument Type Description

i0,i1, ..., i31 Variant Optional index
arguments. Between 0
and 32 index arguments
can be entered. To
reference an element
of the array, specify all
indexes as well as the
field name.

Remarks. When accessing a named field through this property, you must
supply all dimensions of the requested field as well as the field name. This
property always returns a single field value, and generates a bad index error
if you provide an invalid or incomplete index list. Index arguments have
four basic formats:

• Field name only

This format may be used only in the case of a 1-by-1 structure array and
returns the named field’s value. For example:

x("red") = 0.2
x("green") = 0.4
x("blue") = 0.6

In this example, the name of the Item property was neglected. This is
possible since the Item property is the default property of the MWStruct
class. In this case the two statements are equivalent:

x.Item("red") = 0.2
x("red") = 0.2

• Single index and field name

13-18

Utility Library Classes

This format accesses array elements through a single subscripting notation. A
single numeric index n followed by the field name returns the named field on
the nth array element, navigating the array linearly in column-major order.
For example, consider a 2-by-2 array of structures with fields "red", "green"
, and "blue" stored in a variable x. These two statements are equivalent:

y = x(2, "red")
y = x(2, 1, "red")

• All indices and field name

This format accesses an array element of an multidimensional array by
specifying n indices. These statements access all four of the elements of the
array in the previous example:

For I From 1 To 2
For J From 1 To 2

r(I, J) = x(I, J, "red")
g(I, J) = x(I, J, "green")
b(I, J) = x(I, J, "blue")

Next
Next

• Array of indices and field name

This format accesses an array element by passing an array of indices and a
field name. The next example rewrites the previous example using an index
array:

Dim Index(1 To 2) As Integer

For I From 1 To 2
Index(1) = I
For J From 1 To 2

Index(2) = J
r(I, J) = x(Index, "red")
g(I, J) = x(Index, "green")
b(I, J) = x(Index, "blue")

Next
Next

13-19

13 Utility Library for Microsoft® COM Components

With these four formats, the Item property provides a very flexible indexing
mechanism for structure arrays. Also note:

• You can combine the last two indexing formats. Several index arguments
supplied in either scalar or array format are concatenated to form one
index set. The combining stops when the number of dimensions has been
reached. For example:

Dim Index1(1 To 2) As Integer
Dim Index2(1 To 2) As Integer

Index1(1) = 1
Index1(2) = 1
Index2(1) = 3
Index2(2) = 2
x(Index1, Index2, 2, "red") = 0.5

The last statement resolves to

x(1, 1, 3, 2, 2, "red") = 0.5

• The field name must be the last index in the list. The following statement
produces an error:

y = x("blue", 1, 2)

• Field names are case sensitive.

Property NumberOfFields As Long
The read-only NumberOfFields property returns the number of fields in the
structure array.

Property NumberOfDims As Long
The read-only NumberOfDims property returns the number of dimensions in
the struct array.

13-20

Utility Library Classes

Property Dims As Variant
The read-only Dims property returns an array of length NumberOfDims that
contains the size of each dimension of the struct array.

Property FieldNames As Variant
The read-only FieldNames property returns an array of length
NumberOfFields that contains the field names of the elements of the structure
array.

Example. The next Visual Basic code sample illustrates how to access a
two-dimensional structure array’s fields when the field names and dimension
sizes are not known in advance.

Sub foo ()
Dim x As MWStruct
Dim Dims as Variant
Dim FieldNames As Variant

On Error Goto Handle_Error
'
'... Call a method that returns an MWStruct in x
'
Dims = x.Dims
FieldNames = x.FieldNames
For I From 1 To Dims(1)

For J From 1 To Dims(2)
For K From 1 To x.NumberOfFields

y = x(I,J,FieldNames(K))
' ... Do something with y

Next
Next

Next
Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

13-21

13 Utility Library for Microsoft® COM Components

Sub Clone(ppStruct As MWStruct)
Creates a copy of an MWStruct object.

Parameters.

Argument Type Description

ppStruct MWStruct Reference to an
uninitialized MWStruct
object to receive the
copy

Return Value. None

Remarks. Clone allocates a new MWStruct object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic example illustrates the difference
between assignment and Clone for MWStruct objects.

Sub foo ()
Dim x1 As MWStruct
Dim x2 As MWStruct
Dim x3 As MWStruct

On Error Goto Handle_Error
Set x1 = new MWStruct
x1("name") = "John Smith"
x1("age") = 35

'Set reference of x1 to x2
Set x2 = x1

'Create new object for x3 and copy contents of x1 into it
Call x1.Clone(x3)

'x2's "age" field is also modified 'x3's "age" field unchanged
x1("age") = 50

.

.

.

13-22

Utility Library Classes

Exit Sub
Handle_Error:

MsgBox(Err.Description)
End Sub

Class MWField
The MWField class holds a single field reference in an MWStruct object. This
class is noncreatable and contains four properties/methods:

• “Property Name As String” on page 13-23

• “Property Value As Variant” on page 13-23

• “Property MWFlags As MWFlags” on page 13-23

• “Sub Clone(ppField As MWField)” on page 13-23

Property Name As String
The name of the field (read only).

Property Value As Variant
Stores the field’s value (read/write). The Value property is the default
property of the MWField class. The value of a field can be any type that is
coercible to a Variant, as well as object types.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular field. Each field in a
structure has its own MWFlags property. This property overrides the value of
any flags set on the object whose methods are called.

Sub Clone(ppField As MWField)
Creates a copy of an MWField object.

13-23

13 Utility Library for Microsoft® COM Components

Parameters.

Argument Type Description

ppField MWField Reference to an
uninitialized MWField
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWField object and creates a deep copy of
the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWComplex
The MWComplex class passes or receives a complex numeric array into or from
a compiled class method. This class contains four properties/methods:

• “Property Real As Variant” on page 13-24

• “Property Imag As Variant” on page 13-24

• “Property MWFlags As MWFlags” on page 13-25

• “Sub Clone(ppComplex As MWComplex)” on page 13-26

Property Real As Variant
Stores the real part of a complex array (read/write). The Real property is the
default property of the MWComplex class. The value of this property can be any
type coercible to a Variant, as well as object types, with the restriction that
the underlying array must resolve to a numeric matrix (no cell data allowed).
Valid Visual Basic numeric types for complex arrays include Byte, Integer,
Long, Single, Double, Currency, and Variant/vbDecimal.

Property Imag As Variant
Stores the imaginary part of a complex array (read/write). The Imag property
is optional and can be Empty for a pure real array. If the Imag property is
nonempty and the size and type of the underlying array do not match the size

13-24

Utility Library Classes

and type of the Real property’s array, an error results when the object is
used in a method call.

Example. The following Visual Basic code creates a complex array with
the following entries:

x = [1+i 1+2i
2+i 2+2i]

Sub foo()
Dim x As MWComplex
Dim rval(1 To 2, 1 To 2) As Double
Dim ival(1 To 2, 1 To 2) As Double

On Error Goto Handle_Error
For I = 1 To 2

For J = 1 To 2
rval(I,J) = I
ival(I,J) = J

Next
Next
Set x = new MWComplex
x.Real = rval
x.Imag = ival

.

.

.
Exit Sub

Handle_Error:
MsgBox(Err.Description)

End Sub

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular complex array. Each
MWComplex object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

13-25

13 Utility Library for Microsoft® COM Components

Sub Clone(ppComplex As MWComplex)
Creates a copy of an MWComplex object.

Parameters.

Argument Type Description

ppComplex MWComplex Reference to
an uninitialized
MWComplex object to
receive the copy

Return Value. None

Remarks. Clone allocates a new MWComplex object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Class MWSparse
The MWSparse class passes or receives a two-dimensional sparse numeric array
into or from a compiled class method. This class has seven properties/methods:

• “Property NumRows As Long” on page 13-26

• “Property NumColumns As Long” on page 13-27

• “Property RowIndex As Variant” on page 13-27

• “Property ColumnIndex As Variant” on page 13-27

• “Property Array As Variant” on page 13-27

• “Property MWFlags As MWFlags” on page 13-27

• “Sub Clone(ppSparse As MWSparse)” on page 13-28

Property NumRows As Long
Stores the row dimension for the array. The value of NumRows must be
nonnegative. If the value is zero, the row index is taken from the maximum
of the values in the RowIndex array.

13-26

Utility Library Classes

Property NumColumns As Long
Stores the column dimension for the array. The value of NumColumns must be
nonnegative. If the value is zero, the row index is taken from the maximum of
the values in the ColumnIndex array.

Property RowIndex As Variant
Stores the array of row indices of the nonzero elements of the array. The value
of this property can be any type coercible to a Variant, as well as object types,
with the restriction that the underlying array must resolve to or be coercible
to a numeric matrix of type Long. If the value of NumRows is nonzero and any
row index is greater than NumRows, a bad-index error occurs. An error also
results if the number of elements in the RowIndex array does not match the
number of elements in the Array property’s underlying array.

Property ColumnIndex As Variant
Stores the array of column indices of the nonzero elements of the array. The
value of this property can be any type coercible to a Variant, as well as object
types, with the restriction that the underlying array must resolve to or be
coercible to a numeric matrix of type Long. If the value of NumColumns is
nonzero and any column index is greater than NumColumns, a bad-index error
occurs. An error also results if the number of elements in the ColumnIndex
array does not match the number of elements in the Array property’s
underlying array.

Property Array As Variant
Stores the nonzero array values of the sparse array. The value of this property
can be any type coercible to a Variant, as well as object types, with the
restriction that the underlying array must resolve to or be coercible to a
numeric matrix of type Double or Boolean.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular sparse array. Each
MWSparse object has its own MWFlags property. This property overrides the
value of any flags set on the object whose methods are called.

13-27

13 Utility Library for Microsoft® COM Components

Sub Clone(ppSparse As MWSparse)
Creates a copy of an MWSparse object.

Parameters.

Argument Type Description

ppSparse MWSparse Reference to an
uninitialized MWSparse
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWSparse object and creates a deep copy
of the object’s contents. Call this function when a separate object is required
instead of a shared copy of an existing object reference.

Example. The following Visual Basic sample creates a 5-by-5 tridiagonal
sparse array with the following entries:

X = [2 -1 0 0 0
-1 2 -1 0 0
0 -1 2 -1 0
0 0 -1 2 -1
0 0 0 -1 2]

Sub foo()
Dim x As MWSparse
Dim rows(1 To 13) As Long
Dim cols(1 To 13) As Long
Dim vals(1 To 13) As Double
Dim I As Long, K As Long

On Error GoTo Handle_Error
K = 1
For I = 1 To 4

rows(K) = I
cols(K) = I + 1

13-28

Utility Library Classes

vals(K) = -1
K = K + 1
rows(K) = I
cols(K) = I
vals(K) = 2
K = K + 1
rows(K) = I + 1
cols(K) = I
vals(K) = -1
K = K + 1

Next
rows(K) = 5
cols(K) = 5
vals(K) = 2
Set x = New MWSparse
x.NumRows = 5
x.NumColumns = 5
x.RowIndex = rows
x.ColumnIndex = cols
x.Array = vals

.

.

.
Exit Sub

Handle_Error:
MsgBox (Err.Description)

End Sub

Class MWArg
The MWArg class passes a generic argument into a compiled class method. This
class passes an argument for which the data conversion flags are changed for
that one argument. This class has three properties/methods:

• “Property Value As Variant” on page 13-30

• “Property MWFlags As MWFlags” on page 13-30

• “Sub Clone(ppArg As MWArg)” on page 13-30

13-29

13 Utility Library for Microsoft® COM Components

Property Value As Variant
The Value property stores the actual argument to pass. Any type that can be
passed to a compiled method is valid for this property.

Property MWFlags As MWFlags
Stores a reference to an MWFlags object. This property sets or gets the array
formatting and data conversion flags for a particular argument. Each MWArg
object has its own MWFlags property. This property overrides the value of any
flags set on the object whose methods are called.

Sub Clone(ppArg As MWArg)
Creates a copy of an MWArg object.

Parameters.

Argument Type Description

ppArg MWArg Reference to an
uninitialized MWArg
object to receive the
copy

Return Value. None.

Remarks. Clone allocates a new MWArg object and creates a deep copy of the
object’s contents. Call this function when a separate object is required instead
of a shared copy of an existing object reference.

13-30

Enumerations

Enumerations

In this section...

“Enum mwArrayFormat” on page 13-31

“Enum mwDataType” on page 13-31

“Enum mwDateFormat” on page 13-32

Enum mwArrayFormat
The mwArrayFormat enumeration is a set of constants that denote an array
formatting rule for data conversion.

mwArrayFormat Values

Constant Numeric Value Description

mwArrayFormatAsIs 0 Do not reformat the
array.

mwArrayFormatMatrix 1 Format the array as a
matrix.

mwArrayFormatCell 2 Format the array as a
cell array.

Enum mwDataType
The mwDataType enumeration is a set of constants that denote a MATLAB®

numeric type.

mwDataType Values

Constant Numeric Value MATLAB Type

mwTypeDefault 0 N/A

mwTypeLogical 3 logical

mwTypeChar 4 char

mwTypeDouble 6 double

13-31

13 Utility Library for Microsoft® COM Components

mwDataType Values (Continued)

Constant Numeric Value MATLAB Type

mwTypeSingle 7 single

mwTypeInt8 8 int8

mwTypeUint8 9 uint8

mwTypeInt16 10 int16

mwTypeUint16 11 uint16

mwTypeInt32 12 int32

mwTypeUint32 13 uint32

Enum mwDateFormat
The mwDateFormat enumeration is a set of constants that denote a formatting
rule for dates.

mwDateFormat Values

Constant Numeric Value Description

mwDateFormatNumeric 0 Format dates as
numeric values

mwDateFormatString 1 Format dates as strings

13-32

A

Examples

Use this list to find examples in the documentation.

A Examples

Quick Start
“Magic Square Example” on page 1-9

Native Data Conversion
“Example: Native Data Conversion” on page 3-6

COM Components
“Blocking Execution of a Console Application that Creates Figures” on
page 3-26
“Calling a COM Object in a Visual C++® Program” on page 10-12
“Creating and Using a varargin Array in Microsoft® Visual Basic®

Programs” on page 10-27
“Creating and Using varargout in Microsoft® Visual Basic® Programs” on
page 10-28
“Using Array Formatting Flags” on page 10-30
“Using Data Conversion Flags” on page 10-33
“Blocking Execution of a Console Application that Creates Figures” on
page 10-39
“Magic Square Example” on page 11-2
“Creating an Excel® Add-In: Spectral Analysis Example” on page 11-9
“Univariate Interpolation Example” on page 11-23
“Matrix Calculator Example” on page 11-31
“Curve Fitting Example” on page 11-42
“Bouncing Ball Simulation Example” on page 11-50

Sample Applications (C#)
“Creating a Simple Plot” on page 4-3
“Passing Variable Arguments” on page 4-8
“Creating a Spectral Analysis” on page 4-14

A-2

Sample Applications (Java)

“Matrix Math Example” on page 4-22

Sample Applications (Java)
“Phonebook Example” on page 4-31
“Phonebook Example (Visual Basic)” on page 5-25

Sample Applications (Visual Basic .NET)
“Magic Square Example (Visual Basic®)” on page 5-3
“Create Plot Example (Visual Basic®)” on page 5-7
“Variable Arguments Example (Visual Basic®)” on page 5-11
“Spectral Analysis Example (Visual Basic®)” on page 5-15
“Matrix Math Example (Visual Basic®)” on page 5-20

A-3

A Examples

A-4

Glossary

Glossary

assembly
Logical collection of one or more managed EXE or DLL files containing
a .NET application’s code and resources.

CLS
See Common Language Specification.

Common Language Runtime (CLR)
Run-time environment provided by the .NET Framework, which runs
the code and provides services that make the development process
easier.

Common Language Specification (CLS)
A subset of language features supported by the .NET common
language runtime (CLR). CLS includes features common to several
object-oriented programming languages, such as C#, VB.NET, and C++
with managed extensions. CLS-compliant components and tools are
guaranteed to interoperate with other CLS-compliant components and
tools.

component installer
The self-extracting executable created by the builder packaging process,
which is used to deploy components created by the builder.

.ctf files
Component Technology Files, which are the encrypted MATLAB®

functions compiled by the builder.

data conversion classes
Provided by the builder to marshall data between MATLAB® and other
languages.

feval API
Interface generated by the builder for a MATLAB® function. Includes
both input and output arguments in the argument list. Output
arguments are specified first, followed by the input arguments.

Glossary-1

Glossary

finalization
Semiautomatic mechanism provided by the .NET Framework to help
clean up native resources just before garbage collection of a managed
object.

managed
Code written in a programming language that uses the Microsoft® .NET
Framework. The languages share a unified set of class libraries and can
be encoded into an Intermediate Language (IL). A CLR runtime-aware
compiler compiles the IL into native executable code within a managed
execution environment that ensures type safety, array bound and index
checking, exception handling, and garbage collection.

marshal
To gather data from one or more applications and convert it to a format
that is prescribed for a particular receiver or programming interface.

MATLAB Compiler Runtime (MCR)
Part of the MATLAB® Builder™ NE product. Required to run
MATLAB® applications on machines that do not have the MATLAB®

desktop installed.

mxArray
The MATLAB® language works with only a single object type: the
MATLAB® array. All MATLAB® variables, including scalars, vectors,
matrices, strings, cell arrays, structures, and objects are stored as
MATLAB® arrays. In C, the MATLAB® array is declared to be of type
mxArray. The mxArray structure contains, among other things: its type,
its dimensions, the data associated with this array, the number of fields
and field names (if a structure or object).

native code resources
Resources that exist outside the control of the CLR.

.NET Framework
.NET is a software architecture developed by Microsoft® to build
component-based applications. .NET components expose interfaces
that allow other managed applications and components to access their
properties, methods, and events.

Glossary-2

Glossary

Pascal case
A convention for capitalizing identifier names. The first letter in the
identifier and the first letter of each subsequent concatenated word is
capitalized. For example: MakeSquare.

project
A feature of the MATLAB® Builder™ NE product accessed via the
Deployment Tool, which appears when you issue the deploytool
command. A project specifies components and classes to be created and
the functions to be associated with them.

reflection
Programming technique supported by CLR. Used to dynamically create
an instance of a type, bind the type to an existing object, or get the type
from an existing object, and then invoke the type’s methods or access its
fields and properties.

single output API
Interface generated by MATLAB® Builder™ NE when only a single
output is required. Returns result as a single MWArray rather than an
array of MWArrays.

standard API
Interface generated by MATLAB® Builder™ NE. Specifies inputs within
the argument list and outputs as an array of MWArray return values.

Glossary-3

Glossary

Glossary-4

Index

IndexA
access 10-3
array formatting flags 10-29

C
capabilities 12-2
Class MWFlags 13-10
Class MWUtil 13-3
class name 2-2
class properties

properties, class 10-36
CLR 3-21
COM

defined 1-3
COM class

producing 12-23
COM component

as Excel add-in 11-9
registration 12-4
utility classes 13-1
VB examples of creating and using 11-1

COM VARIANT 12-8
command line interface 1-6 9-4
Common Language Specification 1-2
compiler

errors 7-2
compilers

supported 7-2
compiling

complete syntactic details 8-7
component

access 10-3
component indexing 3-23
Component Object Model (COM)

defined 1-3
componentinfo function 8-2
Converting real or imaginary components

MATLAB arrays and vectors
ToArray 3-25

create phonebook example 4-31 5-25
CreateObject function 10-6

D
data conversion

classes for .NET components 7-7
rules for .NET components 7-4
rules for COM components 12-8
utility classes for COM components 13-1

data conversion flags 10-29
deploytool function 8-6
diagnostics 6-4
dispose 3-22
DLLs

utility classes for COM components 13-1

E
Enumeration

mwArrayFormat 13-31
mwDataType 13-31
mwDateFormat 13-32

enumerations 13-31
error handling 3-16
errors 6-4

COM components 6-5
compiler 7-2

examples 4-31 5-25
C# 4-1
C# create plot 4-3
Excel add-in 11-9
magic square 11-2
magic square in C# 1-9

Excel add-in 11-9
exceptions 3-16

F
Figures

Index-1

Index

Keeping open by blocking execution of
console application 3-26

finalization 3-21
flags

array formatting 10-29
data conversion 10-29

G
garbage collection 3-21
global variables 10-36
Globally Unique Identifier (GUID) 12-5
GUID (Globally Unique Identifier) 12-5

I
IDL mapping 12-23

L
limitations 7-3

M
magic square example 11-2
managed classes 2-2
MATLAB Builder NE

introduction 1-2
system requirements 7-2

MATLAB Compiler 7-2
syntax 8-7

matrix math example
C# 4-22

MCR 2-11
singleton 2-9

memory management
CLR 3-21
native resources 3-18

messages 6-4
compiler 7-2

methods

error handling 3-16
missing parameter 13-5
multiple classes 4-14
MWArray class library 7-7
mwarray query

return values 3-13
MWFlags class 13-10
mwregsvr utility 12-4
MWUtil class 13-3

N
native resources

dispose 3-22
finalizing 3-21

.NET common language runtime (CLR) 1-2

.NET component
C# examples of creating and using 4-1
installing 3-3
instantiating classes 3-5
specifying 3-4
VB examples of creating and using 5-1

.NET components
overview of creating 1-4

New operator 10-7

P
problems 6-4
programming

overview 1-8
project

elements of 2-2

R
reflection 3-11
requirements

system 7-2
resource management 3-18
restrictions 7-3

Index-2

Index

return values
handling 3-11
mwarray query 3-13
reflection 3-11

S
self-registering component 12-4
system requirements 7-2

T
troubleshooting 6-4

compiler errors 7-2
type library 12-4

U
unregistering components 12-4
utility library 13-3

V
VARIANT variable 12-8
version number

components 12-6
versioning 2-3
versioning rules 12-7
Visual Basic mapping 12-25

W
WaitForFiguresToDie 3-26

Index-3

	toc
	Getting Started
	What Is MATLAB ® Builder NE?
	About .NET Builder
	How Does the MATLAB ® Builder NE Product Work?
	Creating COM Components

	Unsupported MATLAB Data Types

	Creating a .NET Component
	Using the Deployment Tool
	Using the Command Line to Create .NET Components
	Command-Line Syntax Description
	Using the .NET Bundle Files to Simplify the Command
	Example: Creating a .NET Component Namespace
	Example: Adding Multiple Classes to a Component

	Using Components Created with the MATLAB ® Builder NE Product
	Magic Square Example
	About the Magic Square Example
	Building the .NET Component
	Using the Component in an Application
	MagicDemoApp.cs

	Building and Packaging a .NET Component
	Elements of a MATLAB ® Builder NE Project
	Classes and Methods
	Component and Class Naming Conventions
	Versions

	How Does the MATLAB ® Builder NE Product Handle Data?
	The MATLAB Function Signatures
	Understanding Data Conversion Classes
	Overview of Classes and Methods in the Data Conversion Class Hie
	Advantage of Using Data Conversion Classes

	Automatic Casting to MATLAB Types
	About MATLAB Array Indexing

	What Happens in the Build Process?
	How the .NET Builder Creates a Component
	How the MCR Is Shared Among Classes

	What Happens in the Packaging Process?
	How Does Component Deployment Work?
	Executing MATLAB Functions via the World Wide Web

	Using Components Created by the MATLAB ® Builder NE Product
	Installing the Components on the Development Machine
	Specifying Component Assembly and Namespace
	Creating an Instance of the Class
	Converting Native Data Types to MATLAB Data Types
	Example: Native Data Conversion
	Specifying the Type
	Specifying Optional Arguments
	Examples of Passing Input Arguments
	Passing Array Inputs
	Passing a Variable Number of Outputs

	Handling MATLAB Global Variables
	Handling Return Values
	Use .NET Reflection
	Using MWArray Query

	Handling Errors
	Managing Native Resources
	CLR Memory Manager
	Using Automated Garbage Collection
	Managing Resources with Memory Management Disabled
	Managing Resources with Memory Management Enabled
	Alternative Ways to Free Native Resources
	Using Garbage Collection Provided by the CLR
	Freeing Native Resources by Finalizing
	Using Dispose to Explicitly Free Resources

	Accessing Real or Imaginary Components Within Complex Arrays
	Extracting Real or Imaginary Components
	Returning Values with Component Indexing
	Implementing Component Indexing on Full Complex Numeric Arrays
	Implementing Component Indexing on Sparse Complex Numeric Arrays

	Assigning Values with Component Indexing
	Implementing Component Indexing on Full Complex Numeric Arrays
	Implementing Component Indexing on Sparse Complex Numeric Arrays

	Converting MATLAB Arrays to .NET Arrays Using Component Indexing
	Converting MATLAB Arrays to .NET Arrays
	Converting MATLAB Arrays to .NET Vectors

	Blocking Execution of a Console Application that Creates Figures
	The WaitForFiguresToDie Method
	Code Fragment: Using WaitForFiguresToDie to Block Execution

	Sample Applications (C#)
	Creating a Simple Plot
	Step-by-Step Procedure
	PlotDemoApp.cs

	Passing Variable Arguments
	Step-by-Step Procedure
	drawgraph.m
	extractcoords.m
	VarArgDemoApp.cs
	Creating a Spectral Analysis
	Example Overview
	computefft.m
	plotfft.m
	Step-by-Step Procedure
	SpectraDemoApp.cs

	Matrix Math Example
	Example Overview
	MATLAB Functions to Be Encapsulated
	cholesky.m
	ludecomp.m
	qrdecomp.m
	Step-by-Step Procedure
	MatrixMathDemoApp.cs

	Understanding the MatrixMathDemo Program

	Phonebook Example
	The makephone Function
	Phonebook Example: Step-by-Step Procedure
	getphone.cs

	Sample Applications (Microsoft ® Visual Basic .NET)
	Magic Square Example (Visual Basic)
	MagicDemoApp.vb
	Create Plot Example (Visual Basic)
	PlotDemoApp.vb
	Variable Arguments Example (Visual Basic)
	VarArgDemoApp.vb
	Spectral Analysis Example (Visual Basic)
	SpectraDemoApp.vb
	Matrix Math Example (Visual Basic)
	MatrixMathDemoApp.vb
	Phonebook Example (Visual Basic)
	The makephone Function
	Phonebook Example: Step-by-Step Procedure
	getphone.vb

	Troubleshooting
	Troubleshooting the Build Process
	View the Latest Build Log
	Generate Verbose Output

	Failure to Find a Required File
	Diagnostic Messages
	Enhanced Error Diagnostics Using mstack Trace

	Reference Information
	Requirements for the MATLAB ® Builder NE Product
	System Requirements
	Compiler Requirements
	Limitations and Restrictions
	Using CGI Scripts

	Data Conversion Rules
	Managed Types to MATLAB Arrays
	MATLAB Arrays to Managed Types
	Character and String Conversion
	Unsupported MATLAB Array Types

	Overview of Data Conversion Classes
	Overview of Classes
	Returning Data from the MATLAB Product to Managed Code
	Example of MWNumericArray in a .NET Application
	Interfaces Generated by the MATLAB ® Builder NE Product
	Single Output API
	Standard API
	feval API

	MWArray Class Specification

	Function Reference
	Creating and Installing COM Components
	Building a Deployable Application
	Files in the Self-Extracting Executable
	Using the Command-Line Interface
	Installing COM Components on a Target Computer

	Programming with COM Components Created by the MATLAB ® Builder
	General Techniques
	Registering and Referencing the Utility Library
	Creating an Instance of a Class in Microsoft ® Visual Basic
	CreateObject Function
	Microsoft ® Visual Basic New Operator
	Advantages of Each Technique
	Declaring a Reusable Class Instance

	Calling the Methods of a Class Instance
	Standard Mapping Technique
	Variant
	Examples of Passing Input and Output

	Calling a COM Object in a Visual C++ Program
	Using the MATLAB ® Builder NE Product to Create the Object
	Using the Component in a Visual C++ Program

	Using a COM Component in a .NET Application
	C# Implementation
	Microsoft ® Visual Basic Implementation

	Adding Events to COM Objects
	MATLAB Language Pragma
	Using a Callback with a Microsoft ® Visual Basic Event
	iterate.m
	progess.m

	Passing Arguments
	Overview
	Creating and Using a varargin Array in Microsoft ® Visual Basic
	Creating and Using varargout in Microsoft ® Visual Basic Program

	Using Flags to Control Array Formatting and Data Conversion
	Overview
	Array Formatting Flags
	Using Array Formatting Flags
	Modifying Output Format
	Output Format in VBScript

	Using Data Conversion Flags
	Special Flags for Some Microsoft ® Visual Basic Types

	Using MATLAB Global Variables in Microsoft ® Visual Basic
	Blocking Execution of a Console Application that Creates Figures
	The MCRWaitForFigures Method
	Using MCRWaitForFigures to Block Execution

	Obtaining Registry Information
	Handling Errors During a Method Call

	Using COM Components in Microsoft ® Visual Basic Applications
	Magic Square Example
	Example Overview
	Creating the M-File
	Using the Deployment Tool to Create and Build the Project
	Creating the Microsoft ® Visual Basic Project
	Creating the User Interface
	Creating the Executable in Microsoft ® Visual Basic
	Testing the Application
	Packaging the Component

	Creating an Excel Add-In: Spectral Analysis Example
	Example Overview
	Building the Component
	Integrating the Component with VBA
	Creating the Main VBA Code Module

	Creating the Microsoft ® Visual Basic Form
	Adding the Spectral Analysis Menu Item to Microsoft ® Excel
	Saving the Add-In
	Testing The Add-in
	Creating the Data
	Running the Test

	Packaging and Distributing the Add-In

	Univariate Interpolation Example
	Example Overview
	Using the Deployment Tool to Create and Build the Component
	Using the Component in Microsoft ® Visual Basic
	Creating the Microsoft ® Visual Basic Form

	Matrix Calculator Example
	Example Overview
	Building the Component
	Using the Component in Microsoft ® Visual Basic
	Creating the Microsoft ® Visual Basic Form

	Curve Fitting Example
	Example Overview
	Building the Component
	Building the Project
	Using the Component in Microsoft ® Visual Basic
	Creating the Microsoft ® Visual Basic Form

	Bouncing Ball Simulation Example
	Example Overview
	Building the Component
	Using the Component in Microsoft ® Visual Basic
	Creating the Microsoft ® Visual Basic Form

	How the MATLAB ® Builder NE Product Creates COM Components
	Overview of Internal Processes
	How Is a MATLAB ® Builder NE Component Created?
	Code Generation
	Create Interface Definitions
	C++ Compilation
	Linking and Resource Binding
	Registration of the DLL

	Component Registration
	Self-Registering Components
	Globally Unique Identifier (GUID)
	Versioning

	Data Conversion
	Conversion Rules
	Array Formatting Flags
	Data Conversion Flags
	CoerceNumericToType
	InputDateFormat
	OutputAsDate As Boolean
	DateBias As Long

	Calling Conventions
	Producing a COM Class
	IDL Mapping
	Microsoft ® Visual Basic Mapping

	Utility Library for Microsoft COM Components
	Referencing the Utility Classes
	Utility Library Classes
	Class MWUtil
	Sub MWInitApplication(pApp As Object)
	Sub MWPack(pVarArg, [Var0], [Var1], ... ,[Var31])
	Sub MWUnpack(VarArg, [nStartAt As Long], [bAutoResize As Boolean
	Sub MWDate2VariantDate(pVar)

	Class MWFlags
	Property ArrayFormatFlags As MWArrayFormatFlags
	Property DataConversionFlags As MWDataConversionFlags
	Sub Clone(ppFlags As MWFlags)

	Class MWStruct
	Sub Initialize([varDims], [varFieldNames])
	Property Item([i0], [i1], ..., [i31]) As MWField
	Property NumberOfFields As Long
	Property NumberOfDims As Long
	Property Dims As Variant
	Property FieldNames As Variant
	Sub Clone(ppStruct As MWStruct)

	Class MWField
	Property Name As String
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppField As MWField)

	Class MWComplex
	Property Real As Variant
	Property Imag As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppComplex As MWComplex)

	Class MWSparse
	Property NumRows As Long
	Property NumColumns As Long
	Property RowIndex As Variant
	Property ColumnIndex As Variant
	Property Array As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppSparse As MWSparse)

	Class MWArg
	Property Value As Variant
	Property MWFlags As MWFlags
	Sub Clone(ppArg As MWArg)

	Enumerations
	Enum mwArrayFormat
	Enum mwDataType
	Enum mwDateFormat

	Examples
	Quick Start
	Native Data Conversion
	COM Components
	Sample Applications (C#)
	Sample Applications (Java)
	Sample Applications (Visual Basic .NET)

	Glossary
	Index

	tables
	Files in the Project Subdirectories
	Required Locations to Develop and Use Components
	Diagnostic Messages and Suggested Solutions
	Conversion Rules: Managed Types to MATLAB Arrays
	Conversion Rules: MATLAB Arrays to Managed Types
	Registry Information Returned by componentinfo
	Using the Command Line to Create COM Components
	VARIANT Type Codes Supported
	MATLAB to COM VARIANT Conversion Rules
	COM VARIANT to MATLAB Conversion Rules
	Array Formatting Flags
	Array Formatting Rules for Input Arrays
	Array Formatting Rules for Output Arrays
	Conversion Rules for Input Dates
	mwArrayFormat Values
	mwDataType Values
	mwDateFormat Values

